Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Photography for Accident Reconstruction, Product Liability, and Testing

Many technical projects, most vehicle and component testing, and all accident reconstructions, product failure analyses, and other forensic investigations, require photographic documentation. Roadway evidence disappears, tested or wrecked vehicles are repaired, disassembled, or scrapped, and components can be tested to failure. Photographs are frequently the only evidence that remains of a wreck, or the only records of subjects before or during tests. Making consistently good images during any inspection is a critical part of the evaluation process.
Training / Education

LIDAR and Infrared Cameras for ADAS and Autonomous Sensing

This two-day seminar examines ADAS and autonomous vehicle technologies that have disrupted the traditional automotive industry with their challenges and potential to increase safety while attempting to optimize the cost of car ownership. LIDAR and Infrared camera sensing are seeing a rapid growth and adoption in the industry. However, the sensor requirements and system architecture options continue to evolve almost every six months. This course will provide the foundation to build on for these two technologies in automotive applications. It will include a demonstration model for LIDAR and Infrared camera.
Training / Education

Photogrammetry and Analysis of Digital Media

2022-09-21
Photographs and video recordings of vehicle crashes and accident sites are more prevalent than ever, with dash mounted cameras, surveillance footage, and personal cell phones now ubiquitous. The information contained in these pictures and video provide critical information to understanding how crashes occurred, and in analyzing physical evidence. This course teaches the theory and techniques for getting the most out of digital media, including correctly processing raw video and photographs, correcting for lens distortion, and using photogrammetric techniques to convert the information in digital media to usable scaled three-dimensional data.
Training / Education

LIDAR for ADAS and Autonomous Sensing

2022-04-13
.Advanced Driver Assist System (ADAS) and autonomous vehicle technologies have disrupted the traditional automotive industry with potential to increase safety and optimize the cost of car ownership. Light detection and ranging (LIDAR) sensing, a sensing method that detects objects and maps their distances, is seeing rapid growth and adoption in the industry. However, the sensor requirements and system architecture options continue to evolve. This course will provide the foundation on which to build LIDAR technologies in automotive applications.
Training / Education

Infrared Camera for ADAS and Autonomous Sensing

2022-04-06
Advanced Driver Assist System (ADAS) and autonomous vehicle technologies have disrupted the traditional automotive industry with potential to increase safety and optimize the cost of car ownership. Among the challenges are those of sensing the environment in and around the vehicle. Infrared camera sensing is seeing a rapid growth and adoption in the industry. The applications and illumination architecture options continue to evolve. This course will provide the foundation on which to build near infrared camera technologies for automotive applications.
Technical Paper

Multifunctional Glasses for Automotive

1996-04-01
91A109
The windows of a vehicle have to satisfy the following driver and passenger needs concerning visibility and climate perception both related to active safety: transparency, reluctance, dazzling, glare and diffused light (scattering). All functions are related to visibility and so to the optics of glazing, solar control, deicing, defogging, demisting. The task of material science is to find the multifunctional glasses solving simultaneously problems of visibility, safety and comfort. Particular kind of glasses, colored, wired, coated, electrochromic, liquid crystal, photochromic can be already considered solutions which can operate passively or actively. The example of passive solar control and active heatable coated glasses is shown as a possible practical multifunctional glass very soon.
Technical Paper

Antiwear Properties and Applications of Thin Hard Coatings

1996-04-01
91A106
Different techniques, like PVD, CVD, ion implantation, are increasingly used to produce thin film layers of ceramic compounds to modify the surface properties of metals, carbides, ceramics or polymeric components for specialized conditions or in severe conditions of use. Carbides, nitrides, oxides, etc. have been deposited on the most varied supports to solve problems of high temperature, erosion, corrosion, diffusion and conductivity or electrical resistance. The fields of thin hard coating applications are: tools, dies, punches, mechanical components (for antiwear deposits), structures (for anticorrosion), optics (reflecting or absorbing layers) and microelectronics. In this paper we will present the principal characteristics of different thin hard coating layers and processes, and the principal applications in the anti-wear field.
Technical Paper

A New Wavelet Technique for Transient Sound Visualization and Application to Automotive Door Closing Events

1999-05-17
1999-01-1682
Transient automotive sounds often possess a complex internal structure resulting from one or more impacts combined with mechanical and acoustic cavity resonances. This structure can be revealed by a new technique for obtaining translation-invariant scalograms from orthogonal discrete wavelet transforms. These scalograms are particularly well suited to the visualization of complex sound transients which span a wide dynamic range in time (ms to s) and frequency (∼100Hz to ∼10kHz). As examples, scalograms and spectrograms of door latch closing events from a variety of automotive platforms are discussed and compared in light of the subjective rankings of the sounds.
Technical Paper

Design of Manufacturing Systems to Support Volume Flexibility

1999-05-10
1999-01-1621
This paper presents an Axiomatic Design framework for manufacturing system design and illustrates how lean cellular manufacturing can achieve volume flexibility. Axiomatic Design creates a design framework by mapping the functional requirements of a system to specific design parameters. Volume flexibility is often neglected as a requirement of manufacturing systems. Very few industries are fortunate enough to experience stable or predictable product demand. In reality, demand is often volatile and uncertain. It is important that manufacturing system designers are aware of manufacturing system types which can accommodate volume flexibility and follow a structured design methodology that assures that all requirements are met by the system.
Technical Paper

Considerations About Chaotic Dynamics of Exhaust Tube and its Design Optimization in Respect to its Dynamic Properties

1999-05-17
1999-01-1657
Vibration of an exhaust tube with a non-linear fixing construction is analyzed. Numerical and laser holography investigation methods are used for the determination of vibration processes happening nearby the cylinder fixing areas. Obviously, the analyzed non-linear system can produce complex reactions even to harmonic excitations. The knowledge about such zones of “wrong” dynamic behavior may help to eliminate and reduce higher noise levels and extend the lifetime of the construction.
Technical Paper

Characterisation of the Injection-Combustion Process in a D.I. Diesel Engine Running with Rape Oil Methyl Ester

1999-05-03
1999-01-1497
The objective of the work presented here is to evaluate the potential of rape oil methyl ester (RME) to improve the combustion process in a high-speed direct injection (HSDI) Diesel engine equipped with high-pressure common-rail injection system. The study, based on the comparison of three different fuels (standard gas-oil, RME and 30% RME/gas-oil mixture), takes into account the main aspects that control Diesel combustion, from the injection rate characteristics to the spray behaviour characterised using an optical pressurised chamber. This global study of the whole injection-combustion process allows identifying some causes of the decrease in pollutant emissions observed when the engine operates with RME.
Technical Paper

Instantaneous Flow Field Effects on the Flame Kernel in S.I.Engine by Simultaneous Optical Diagnostics

2000-06-19
2000-01-1796
Many studies were done about the link between the flame kernel behavior and the global combustion stability. It was shown that aerodynamics and mixture preparation are predominant for flame propagation. Multidimensional optical diagnostic techniques have become an important tool to study combustion inside engines. One-point measurements of flow field have been done in order to look at the impact on global combustion analysis. But the effect of the instantaneous flow field at the vicinity of the spark plug and at the spark timing on the flame kernel was not well explored. It is the objective of this paper: to quantify as well as possible, the effects of the instantaneous local velocity field at the vicinity of the spark plug and just prior spark, on the flame kernel propagation.
Technical Paper

Visualization of the Qualitative Fuel Distribution and Mixture Formation Inside a Transparent GDI Engine with 2D Mie and LIEF Techniques and Comparison to Quantitative Measurements of the Air/Fuel Ratio with 1D Raman Spectroscopy

2000-06-19
2000-01-1793
Mie-Scattering and laser induced exciplex fluorescence (LIEF) were used to visualize the distribution of liquid fuel and fuel vapor inside an optical accessible one-cylinder research engine with gasoline direct injection (GDI). Using a tracer which was developed especially for the environments of gasoline combustion engines, LIEF enables an extensive separation between liquid and vapor phase and delivers a signal proportional to the equivalence ratio. Simultaneous images of LIEF and Mie scattering proof the high quality of the phase separation using this tracer concept. The mixture formation process will be shown exemplary at one operation point with homogeneous load and another with stratified load. First results of determining the air/fuel ratio by means of linear Raman spectroscopy will be presented and compared with the two-dimensional qualitative distribution of the fuel vapor (LIEF).
Technical Paper

Experimental Investigation of an Optical Direct Injection S.I. Engine Using Fuel-Air Ratio Laser Induced Fluorescence

2000-06-19
2000-01-1794
To provide fuel/air ratio quantitative measurements in an S.I engines, a transparent cylinder engine is investigated with the Fuel-Air Ratio Laser Induced Fluorescence (FARLIF) technique. In a homogeneous mixture, the two dimensional distribution for the fuel/air ratio is calibrated and measured during the compression stroke for different equivalence ratios. After spark ignition, the combustion zone and the flame front are visualized by laser sheet LIF. The direct-injection stratified-charge, new concept for gasoline engines is investigated with FARLIF. In the direct injection gasoline engine where the fuel is directly injected into a cylinder and the flow is highly turbulent, two injection timings are used: -early injection (i.e. during the intake stroke) to promote a homogeneous distribution; -late injection during the compression stroke, to generate a ultra-lean stratified charge.
Technical Paper

Experimental and Numerical Approach to Productionizing a GDI-2 Stroke Spark Ignited Small Displacement Engine Design

1999-09-28
1999-01-3290
The first part of the paper gives an overview of the environmental conditions with which a future two stroke powered vehicle must comply and explains the reasons for which a direct gasoline injection into the combustion chamber offers a potential solution. The paper continues with a description of the fuel/air mixture injection used in the F.A.S.T. concept and gives a detailed overview of the layout of the 125 cc engine to which it is applied. The structure of its electronic engine management system, mandatory for the necessary control precision, is presented. Hereafter is made a short introduction to the visualization and numerical computation tools used for the engine design optimization. The paper concludes with a detailed presentation and discussion of the experimental results obtained with the engine operated, either in steady state and transient conditions on an engine test rig, and mounted in a classic small dimension two-wheel vehicle submitted to road tests.
Technical Paper

Optical Investigations of a Gasoline Direct Injection Engine

1999-10-25
1999-01-3688
In this paper optical investigations of a gasoline direct injection engine with narrow spacing arrangement of spark plug and injector are presented. For the combustion analysis spectroscopy techniques based on the fiber technique are used. With this measurement technique information about soot formation and temperature progression in the combustion chamber is obtained. Furthermore a validation of numerical simulation of the stratified combustion with data obtained experimentally, is performed and discussed.
Technical Paper

A Study of the Homogeneous Charge Compression Ignition Combustion Process by Chemiluminescence Imaging

1999-10-25
1999-01-3680
An experimental study of the Homogeneous Charge Compression Ignition (HCCI) combustion process has been conducted by using chemiluminescence imaging. The major intent was to characterize the flame structure and its transient behavior. To achieve this, time resolved images of the naturally emitted light were taken. Emitted light was studied by recording its spectral content and applying different filters to isolate species like OH and CH. Imaging was enabled by a truck-sized engine modified for optical access. An intensified digital camera was used for the imaging. Some imaging was done using a streak-camera, capable of taking eight arbitrarily spaced pictures during a single cycle, thus visualizing the progress of the combustion process. All imaging was done with similar operating conditions and a mixture of n-heptane and iso-octane was used as fuel. Some 20 crank angles before Top Dead Center (TDC), cool flames were found to exist.
Technical Paper

Characteristics of Direct Injection Gasoline Spray Wall Impingement at Elevated Temperature Conditions

1999-10-25
1999-01-3662
The direct injection gasoline spray-wall interaction was characterized inside a heated pressurized chamber using various visualization techniques, including high-speed laser-sheet macroscopic and microscopic movies up to 25,000 frames per second, shadowgraph, and doublespark particle image velocimetry. Two hollow cone high-pressure swirl injectors having different cone angles were used to inject gasoline onto a heated plate at two different impingement angles. Based on the visualization results, the overall transient spray impingement structure, fuel film formation, and preliminary droplet size and velocity were analyzed. The results show that upward spray vortex inside the spray is more obvious at elevated temperature condition, particularly for the wide-cone-angle injector, due to the vaporization of small droplets and decreased air density. Film build-up on the surface is clearly observed at both ambient and elevated temperature, especially for narrow cone spray.
Technical Paper

Comparison of Different Ways for Image Post-Processing: Detection of Flame Fronts

1999-10-25
1999-01-3651
A detailed understanding of the complex chemistry-turbulence interaction is gaining an increasing importance for further improvement of IC engine performance. Multidimensional optical diagnostic techniques have become a versatile tool for engine development. Sophisticated automatic data post-processing will achieve an increasing significance for efficient data reduction in such optical experiments. The focus of this paper is the detection of flame fronts using different image processing algorithms. In a further step of the data reduction, the extraction of the length of the flame front and the area of the burnt gases is presented. A strategy relying on a sensitivity analysis is discussed which allows an objective choice of parameters necessary for the application of the mathematical algorithms.
X