Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Velocity Measurements in the Wall Boundary Layer of a Spark-Ignited Research Engine

1987-11-01
872105
Laser Doppler velocimetry has been used to measure velocity and turbulence intensity profiles in the wall boundary layer of a spark-ignited homogeneous-charge research engine. By using a toroidal contoured engine head it was possible to bring the laser probe volume to within 60 μm of the wall. Two different levels of engine swirl were used to vary the flow Reynolds number. For the high swirl case under motored operation the boundary layer thickness was less than 200 μm, and the turbulence intensity increased as the wall was approached. With low swirl the 700-1000 μm thick boundary layer had a velocity profile that was nearly laminar in shape, and there was no increase in turbulence intensity near the wall. When the engine was fired the boundary layer thickness increased for both levels of swirl.
Technical Paper

Investigation of the Characteristics of a High Pressure Injector

1989-09-01
892101
This paper will focus on the spray characteristics of a high pressure (up to 155 MPa) accumulator type injector in a high pressure (chosen density) quiescent spray chamber. The injector uses a standard single orifice nozzle which produces a full cone spray. Using this apparatus, we are examining the fundamental aspects of high pressure spray formation under controlled conditions. Experimental data was collected using high speed photography (10,000 frames per second) which used a pulsed copper-vapor laser as a light source. Two photographic techniques are being utilized. Direct attenuation allows measurement of tip penetration, spray cone angle, and injection duration. Scattering from a sheet of laser light perpendicular to the camera field of view is being developed in an attempt to resolve inner spray cone structure. In addition to the quantitative data from the high speed photography, injector accumulator pressure, supply pressure and injection rate histories were recorded.
Technical Paper

Can Paper Engines Stand the Heat?

1984-01-01
840911
Accurate and useful mathematical models of physical processes can be made when we understand all of the phenomena involved. This paper reviews our understanding of the fluid flow, heat transfer and thermodynamic processes occurring in engines and the status of mathematical models expressing this understanding. Thermodynamic single system rate models are found to be extremely useful in predicting power and fuel consumption performance but of limited value in predicting emission performance. Multiple-zone, nonequilibrium models are essential for predicting emissions but are limited in accuracy by computer capacity and our understanding of engine phenomena which vary rapidly both with space and time. The need for and ability of new types of instrumentation, primarily optical, to increase our understanding of engine phenomena and improve our models is discussed.
Technical Paper

Neutron Imaging of Diesel Particulate Filters

2009-11-02
2009-01-2735
This article presents nondestructive neutron computed tomography (nCT) measurements of Diesel Particulate Filters (DPFs) as a method to measure ash and soot loading in the filters. Uncatalyzed and unwashcoated 200cpsi cordierite DPFs exposed to 100% biodiesel (B100) exhaust and conventional ultra low sulfur 2007 certification diesel (ULSD) exhaust at one speed-load point (1500 rpm, 2.6 bar BMEP) are compared to a brand new (never exposed) filter. Precise structural information about the substrate as well as an attempt to quantify soot and ash loading in the channel of the DPF illustrates the potential strength of the neutron imaging technique.
Technical Paper

Investigation of MicroFlow Machining Effects on Diesel Injector Spray Characteristics

2004-03-08
2004-01-0026
An investigation of the effect of microflow machining on the spray characteristics of diesel injectors was undertaken. A collection of four VCO injector tips were tested prior to and after an abrasive flow process using a high viscosity media. The injector nozzles were tested on a spray fixture. Rate of injection measurements and high-speed digital images were used for the quantification of the air entrainment rate. Comparisons of the spray characteristics and A/F ratios were made for conditions of before and after the abrasive flow process. Results showed a significant decrease in the injection-to-injection variability and improvement of the spray symmetry. A link between the quantity of air entrained and potential differences in spray plume internal chemical composition and temperature is proposed via equilibrium calculations.
Technical Paper

Determination of Diesel Injector Nozzle Characteristics Using Two-Color Optical Pyrometry

2002-03-04
2002-01-0746
An investigation of several diesel injector nozzles that produced different engine emissions performance was performed. The nozzle styles used were two VCO type nozzles that were manufactured using two different techniques, and two mini-sac nozzles that provided comparison. Fired experiments were conducted on a Detroit Diesel Series 50 engine. Optical access was obtained by substituting a sapphire window for one exhaust valve. Under high speed, high load, retarded injection timing conditions, it was discovered that each nozzle produced different specific soot and NOx emissions. High-speed film images were obtained. It was discovered that the temperature and KL factor results from the 2-color optical pyrometry showed significant differences between the nozzles. The authors propose the possibility that differences in air entrainment, caused by potential differences in CD due to surface finish, may contribute to the variance in emissions performance.
Journal Article

A Detailed Comparison of Emissions and Combustion Performance Between Optical and Metal Single-Cylinder Diesel Engines at Low Temperature Combustion Conditions

2008-04-14
2008-01-1066
A detailed comparison of cylinder pressure derived combustion performance and engine-out emissions is made between an all-metal single-cylinder light-duty diesel engine and a geometrically equivalent engine designed for optical accessibility. The metal and optically accessible single-cylinder engines have the same nominal geometry, including cylinder head, piston bowl shape and valve cutouts, bore, stroke, valve lift profiles, and fuel injection system. The bulk gas thermodynamic state near TDC and load of the two engines are closely matched by adjusting the optical engine intake mass flow and composition, intake temperature, and fueling rate for a highly dilute, low temperature combustion (LTC) operating condition with an intake O2 concentration of 9%. Subsequent start of injection (SOI) sweeps compare the emissions trends of UHC, CO, NOx, and soot, as well as ignition delay and fuel consumption.
Journal Article

Pathline Analysis of Full-cycle Four-stroke HCCI Engine Combustion Using CFD and Multi-Zone Modeling

2008-04-14
2008-01-0048
This paper investigates flow and combustion in a full-cycle simulation of a four-stroke, three-valve HCCI engine by visualizing the flow with pathlines. Pathlines trace massless particles in a transient flow field. In addition to visualization, pathlines are used here to trace the history, or evolution, of flow fields and species. In this study evolution is followed from the intake port through combustion. Pathline analysis follows packets of intake charge in time and space from induction through combustion. The local scalar fields traversed by the individual packets in terms of velocity magnitude, turbulence, species concentration and temperatures are extracted from the simulation results. The results show how the intake event establishes local chemical and thermal environments in-cylinder and how the species respond (chemically react) to the local field.
X