Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

A New Method of Target Detection Based on Autonomous Radar and Camera Data Fusion

2017-09-23
2017-01-1977
Vehicle and pedestrian detection technology is the most important part of advanced driving assistance system (ADAS) and automatic driving. The fusion of millimeter wave radar and camera is an important trend to enhance the environmental perception performance. In this paper, we propose a method of vehicle and pedestrian detection based on millimeter wave radar and camera. Moreover, the proposed method complete the detection of vehicle and pedestrian based on dynamic region generated by the radar data and sliding window. First, the radar target information is mapped to the image by means of coordinate transformation. Then by analyzing the scene, we obtain the sliding windows. Next, the sliding windows are detected by HOG features and SVM classifier in a rough detect. Then using the match function to confirm the target. Finally detecting the windows in a precision detection and merging the detecting windows. The target detection process is carried out in the following three steps.
Technical Paper

Hybrid Camera-Radar Vehicle Tracking with Image Perceptual Hash Encoding

2017-09-23
2017-01-1971
For sensing system, the trustworthiness of the variant sensors is the crucial point when dealing with advanced driving assistant system application. In this paper, an approach to a hybrid camera-radar application of vehicle tracking is presented, able to meet the requirement of such demand. Most of the time, different types of commercial sensors available nowadays specialize in different situations, such as the ability of offering a wealth of detailed information about the scene for the camera or the powerful resistance to the severe weather for the millimeter-wave (MMW) radar. The detection and tracking in different sensors are usually independent. Thus, the work here that combines the variant information provided by different sensors is indispensable and worthwhile. For the real-time requirement of merging the measurement of automotive MMW radar in high speed, this paper first proposes a fast vehicle tracking algorithm based on image perceptual hash encoding.
Technical Paper

Lane Marking Detection for Highway Scenes based on Solid-state LiDARs

2021-12-15
2021-01-7008
Lane marking detection plays a crucial role in Autonomous Driving Systems or Advanced Driving Assistance System. Vision based lane marking detection technology has been well discussed and put into practical application. LiDAR is more stable for challenging environment compared to cameras, and with the development of LiDAR technology, price and lifetime are no longer an issue. We propose a lane marking detection algorithm based on solid-state LiDARs. First a series of data pre-processing operations were done for the solid-state LiDARs with small field of view, and the needed ground points are extracted by the RANSAC method. Then, based on the OTSU method, we propose an approach for extracting lane marking points using intensity information.
Technical Paper

A Localization System for Autonomous Driving: Global and Local Location Matching Based on Mono-SLAM

2018-08-07
2018-01-1610
The utilization of the SLAM (Simultaneous Localization and Mapping) technique was extended from the robotics to the autonomous vehicles for achieving the positioning. However, SLAM cannot obtain the global position of the vehicle but a relative one to the start. For sake of this, a fast and accurate system was proposed to obtain both the local position and the global position of vehicles based on mono-SLAM which realized the SLAM by using monocular camera with a lower cost and power consumption. Firstly, the rough latitude and longitude of current position was obtained by using common GPS without differential signal. Then, the Mono-SLAM operated on the consecutive video frames to generate the localization and local trajectory and its accuracy was further improved by utilizing the IMU information. After that, a piece of Map centered in the rough position obtained by common GPS was downloaded from the Open Street Map.
Technical Paper

System Design and Model of a 3D 79 GHz High Resolution Ultra-Wide Band Millimeter-Wave Imaging Automotive Radar

2018-08-07
2018-01-1615
Automotive radar is an important environment perception sensor for advance driving assistance system. It can detect objects around the vehicle with high accuracy and it works in all bad weathers. For traditional automotive radar, it cannot measure the objects’ height. Thus, a manhole cover on the road surface or a guideboard high above the road would be taken erroneously as a non-moving car. In such cases, the adaptive cruise system would decelerate or stop the vehicle erroneously and make the driver uncomfortable. A 3D automotive radar with two-dimensional electronic scanning can measure the targets’ height as well as the targets’ azimuth angle. This paper presents a 79 GHz ultra-wide band automotive 3D imaging radar. Due to the 4 GHz wide bandwidth, the range resolution of this radar can be as small as 3.75 cm.
Technical Paper

Semantic Segmentation for Traffic Scene Understanding Based on Mobile Networks

2018-08-07
2018-01-1600
Real-time and reliable perception of the surrounding environment is an important prerequisite for advanced driving assistance system (ADAS) and automatic driving. And vision-based detection plays a significant role in environment perception for automatic vehicles. Although deep convolutional neural networks enable efficient recognition of various objects, it has difficulty in accurately detecting special vehicles, rocks, road pile, construction site, fence and so on. In this work, we address the task of traffic scene understanding with semantic image segmentation. Both driveable area and the classification of object can be attained from the segmentation result. First, we define 29 classes of objects in traffic scenarios with different labels and modify the Deeplab V2 network. Then in order to reduce the running time, MobileNet architecture is applied to generate the feature map instead of the original models.
Technical Paper

Robust Multi-Lane Detection and Tracking in Temporal-Spatial Based on Particle Filtering

2019-04-02
2019-01-0885
The camera-based advanced driver assistance systems (ADAS) like lane departure warning system (LDWS) and lane keeping assist (LKA) can make vehicles safer and driving easier. Lane detection is indispensable for these lane-based systems for achieving vehicle local localization and behavior prediction. Since the vision is vulnerable to the variable environment conditions such as bad weather, occlusions and illumination, the robustness is important. In this paper, a robust algorithm for detecting and tracking multiple lanes with arbitrary shape is proposed. We extend the previously lane detection and tracking process from the space domain to the temporal-spatial domain by using a more robust and general multi-lane model. First, new slice images containing temporal information are generated from image sequences. Instead of binarization process, we use a more general detector for extracting the lane marker candidates with prior knowledge to generate the binary slice image.
Technical Paper

Improved Joint Probabilistic Data Association Multi-target Tracking Algorithm Based on Camera-Radar Fusion

2021-04-15
2021-01-5002
A Joint Probabilistic Data Association (JPDA) multi-objective tracking improvement algorithm based on camera-radar fusion is proposed to address the problems of poor single-sensor tracking performance, unknown target detection probability, and missing valid targets in complex traffic scenarios. First, according to the correlation rule between the target track and the measurement, the correlation probability between the target and the measurement is obtained; then the measurement collection is divided into camera-radar measurement matched target, camera-only measurement matched target, radar-only measurement matched target, and no-match target; and the correlation probability is corrected with different confidence levels to avoid the use of unknown detection probability.
Technical Paper

Research on Gesture Recognition Algorithm Based on Millimeter-Wave Radar in Vehicle Scene

2022-03-31
2022-01-7017
With the increasing intelligence of human society, people's demand for human-computer interaction is also increasing. As an important communication medium for human to express information, gesture has always been an important topic in human-computer interaction. Using gesture recognition technology in the vehicle environment can reduce the operation difficulty during driving, reduce the possibility of driver distraction, and greatly improve driving safety and driving experience. Millimeter wave radar can effectively protect the privacy in the car from being leaked, and can still work normally in the dark interior environment. Moreover, with the development of millimeter wave technology from 24g to 60g and 77g, the improvement of its resolution further improves its ability to detect small displacement. Therefore, the gesture recognition technology using millimeter wave radar has been developed.
X