Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Control Systems Simplified

2019-09-11
The advent of digital computers and the availability of ever cheaper and faster micro processors have brought a tremendous amount of control system applications to the automotive industry in the last two decades. From engine and transmission systems, to virtually all chassis subsystems (brakes, suspensions, and steering), some level of computer control is present. Control systems theory is also being applied to comfort systems such as climate control and safety systems such as cruise control or collision mitigation systems.
Training / Education

Advanced Power Electronics in Automotive Applications

2019-05-07
It’s estimated that over 40% of the on-board components in the entire car are electronic based and that percentage is expected to rise with the growth of hybrid and autonomous vehicles and will continue to be an enabling technology for a wide range of future loads with new features and functions. From lighting, infotainment, and safety systems, to powertrain systems and beyond, power electronics has become one of the most important areas of the automotive subsystem and bringing this technology to non-electrical engineers will help bridge a knowledge gap that will drive teams forward quicker and more efficiently.
Training / Education

Introduction to Power Electronics in Automotive Applications

2019-05-06
Modern power electronics (PE) devices and circuits are now in widespread use in automotive and non-automotive applications. The purpose of this course is to give an overall introduction to the key aspects of power electronic circuits, components and design in automotive applications. Topics covered include power semiconductor devices, their characteristics and operation, and their use in power electronics circuits.
Training / Education

Keys to Creating a Cybersecurity Process from the J3061 Process Framework

2019-04-29
Connected vehicles are increasingly seen as a target for cybersecurity attacks. A key differentiator for the automotive industry is the use of cyber-physical systems, where a successful cybersecurity attack can affect physical entities. Often involving embedded electronics and real time control, these systems require different solutions in addition to established IT security principles and reactive responses to threats. Cybersecurity needs to be designed and built into cyber-physical systems throughout the development lifecycle to provide defense in depth.
Book

Electronic Transmission Controls

2000-06-10
The evolution of the automotive transmission has changed rapidly in the last decade, partly due to the advantages of highly sophisticated electronic controls. This evolution has resulted in modern automatic transmissions that offer more control, stability, and convenience to the driver. Electronic Transmission Controls contains 68 technical papers from SAE and other international organizations written since 1995 on this rapidly growing area of automotive electronics. This book breaks down the topic into two sections. The section on Stepped Transmissions covers recent developments in regular and 4-wheel drive transmissions from major auto manufacturers including DaimlerChrysler, General Motors, Toyota, Honda, and Ford. Technology covered in this section includes: smooth shift control; automatic transmission efficiency; mechatronic systems; fuel saving technologies; shift control using information from vehicle navigation systems; and fuzzy logic control.
Book

Concepts in Turbocharging for Improved Efficiency and Emissions Reduction

2014-09-22
Legislative requirements to reduce CO2 emissions by 2020 have resulted in significant efforts by car manufacturers to explore various methods of pollution abatement. One of the most effective ways found so far is by shortening the cylinder stroke and downsizing the engine. This new engine then needs to be boosted, or turbocharged, to create the full and original load torque. Turbocharging has been and will continue to be a key component to the new technologies that will make a positive difference in the next-generation engines of years to come. Concepts in Turbocharging for Improved Efficiency and Emissions Reduction explores the many ways that turbocharging will deliver concrete results in meeting the new realities of sustainable, green transportation.
Standard

Vehicle Electronic Programming Stations (VEPS) System Specification for Win32®

2013-09-23
CURRENT
J2461_201309
SAE J2461 specifies the recommended practices of a Vehicle Electronics Programming Stations (VEPS) architecture.in a Win32® environment. This system specification, SAE J2461, was a revision of the requirements for Vehicle Electronics Programming Stations (VEPS) set forth in SAE J2214, Vehicle Electronics Programming Stations (VEPS) System Specification for Programming Components at OEM Assembly Plants (Cancelled Jun 2004). The J2214 standard has been cancelled indicating that it is no longer needed or relevant.
Standard

Class A Application/Definition

2006-09-12
CURRENT
J2057/1_200609
This SAE Information Report will explain the differences between Class A, B, and C networks and clarify through examples, the differences in applications. Special attention will be given to a listing of functions that could be attached to a Class A communications network.
Standard

Selection of Transmission Media

2000-02-23
CURRENT
J2056/3_200002
This SAE Information Report studies the present transmission media axioms and takes a fresh look at the Class C transmission medium requirements and also the possibilities and limitations of using a twisted pair as the transmission medium. The choice of transmission medium is a large determining factor in choosing a Class C scheme.
Standard

Class A Multiplexing Sensors

2006-09-12
CURRENT
J2057/3_200609
The Class A Task Force of the Vehicle Network for Multiplexing and Data Communications Subcommittee is providing information on sensors that could be applicable for a Class A Bus application. Sensors are generally defined as any device that inputs information onto the bus. Sensors can be an input controlled by the operator or an input that provides the feedback or status of a monitored vehicle function. Although there is a list of sensors provided, this list is not all-inclusive. This SAE Information Report is intended to help the network system engineer and is meant to stimulate the design thought process.
Standard

Class A Multiplexing Actuators

2006-09-12
CURRENT
J2057/2_200609
The Class A Task Force of the Vehicle Network for Multiplex and Data Communications Committee is publishing this SAE Information Report to provide insight into Class A Multiplexing. Multiplexed actuators are generally defined as devices which accept information from the multiplexed bus. A multiplexed actuator can be an output device controlled by the operator or an intelligent controller. A Multiplex actuator can also be a display device that reports the status of a monitored vehicle function. This document is intended to help the network system engineers and is meant to stimulate the design thought process. A list of multiplexed actuator examples is provided in Appendix A, Figure A1. Many other examples can be it identified.
Standard

Hydraulic Motor Test Procedures

2009-06-12
CURRENT
J746_200906
This test code describes tests for determining characteristics of hydraulic positive displacement motors as used on construction and industrial machinery as referenced in SAE J1116. These characteristics are to be recorded on data sheets similar to the one shown in Figure 1. Two sets of data sheets are to be submitted: one at 49 °C (120 °F) and one at 82 °C (180 °F).
Standard

MECHANICAL STOP LAMP SWITCH

1988-06-01
CURRENT
J249_198806
The mechanical stop lamp switch is an operator activated mechanical device intended primarily to control the functioning of the stop lamp and high mounted stop lamp circuits. Secondarily, the device may control the functioning of various accessories, such as disengaging cruise control, with operator actuation of brake pedal.
Standard

Transport Area Network Cabling

2011-06-30
CURRENT
J2496_201106
This series of SAE Recommended Practices was developed to provide an open architecture system for on-board electronic systems. It is the intention of these documents to allow electronic devices to communicate with each other by providing a standard architecture. This particular document describes the Network Interface and Cabling which defines the requirements needed for communicating between devices that are on different segments of the SAE J2496 Transport Area Network. While these recommended practices may be used in retrofitting older vehicles, the primary intent is for implementation in new bus procurements.
Standard

Adaptive Cruise Control (ACC) Operating Characteristics and User Interface

2014-09-25
CURRENT
J2399_201409
Adaptive cruise control (ACC) is an enhancement of conventional cruise control systems that allows the ACC-equipped vehicle to follow a forward vehicle at a pre-selected time gap, up to a driver selected speed, by controlling the engine, power train, and/or service brakes. This SAE Standard focuses on specifying the minimum requirements for ACC system operating characteristics and elements of the user interface. This document applies to original equipment and aftermarket ACC systems for passenger vehicles (including motorcycles). This document does not apply to heavy vehicles (GVWR > 10,000 lbs. or 4,536 kg). Furthermore, this document does not address other variations on ACC, such as “stop & go” ACC, that can bring the equipped vehicle to a stop and reaccelerate. Future revisions of this document should consider enhanced versions of ACC, as well as the integration of ACC with Forward Vehicle Collision Warning Systems (FVCWS).
Standard

Human Factors in Forward Collision Warning Systems: Operating Characteristics and User Interface Requirements

2003-08-29
CURRENT
J2400_200308
Forward Collision Warning (FCW) systems are onboard systems intended to provide alerts to assist drivers in avoiding striking the rear end of another moving or stationary motorized vehicle. This SAE Information Report describes elements for a FCW operator interface, as well as requirements and test methods for systems capable of warning drivers of rear-end collisions. This information report applies to original equipment and aftermarket FCW systems for passenger vehicles including cars, light trucks, and vans. This report does not apply to heavy trucks. Furthermore, this document does not address integration issues associated with adaptive cruise control (ACC), and consequently, aspects of the document could be inappropriate for an ACC system integrated with a FCW system.
X