Refine Your Search




Search Results

Training / Education

The Principles and Applications of Powertrain Controls for the New Energy Vehicles

课程概述 Powertrain controls for NEVs is one of the most complex and highly confidential areas of NEV research and development. This two-day course takes the seemingly complicated field of NEV powertrain controls and summarizes it into a few basic principles. The latest and most popular NEV powertrains are also reviewed to illustrate these principles and the controls strategies used. 对于新能源汽车来说,动力总成控制一直以来都是最复杂的和高度机密的领域之一。在这两天的课程中,我们将把看似复杂的动力总成控制系统总结出几条基本规则,同时,通过对当今其他车型动力控制系统的案例分析,来把这些规则和原理进行融会贯通。
Training / Education

Control Systems Simplified

The advent of digital computers and the availability of ever cheaper and faster micro processors have brought a tremendous amount of control system applications to the automotive industry in the last two decades. From engine and transmission systems, to virtually all chassis subsystems (brakes, suspensions, and steering), some level of computer control is present. Control systems theory is also being applied to comfort systems such as climate control and safety systems such as cruise control or collision mitigation systems.
Training / Education

Fundamentals of Powertrain Design for Hybrid Electric Vehicles

This course is offered only in China. Driven by high fuel prices, environmental regulations, and consumer demand, the market for hybrid electric vehicles (HEV) has experienced rapid growth. Every major automotive company produces an HEV. There are approximately fifty different HEV models on the market and over eight million HEVs already sold. In order to meet current and future demands in the HEV and PHEV markets, success will depend on engineering personnel knowing how to develop and manufacture HEV powertrains. This two day seminar will cover the fundamentals of HEV powertrain design.
Training / Education

Fuel Systems Material Selection and Compatibility with Alternative Fuels

This course will introduce the participants to the factors governing fuel-material compatibility and methods to predict and empirically determine compatibility for new alternative fuel chemistries. By understanding the mechanisms and factors associated with chemically-induced degradation, participants will be able to assess the impact of fuel chemistry to infrastructure components, including those associated with vehicle fuel systems. This course is unique in that it looks at compatibility from a fuel chemistry perspective, especially new fuel types such as alcohols and other biofuels.
Training / Education

Common Rail Diesel Fuel Injection

The improved efficiencies of the modern diesel engine have led to its increased use within the mobility industry. The vast majority of these diesel engines employ a high-pressure common rail fuel injection system to increase the engine's fuel-saving potential, emissions reduction, and overall performance. This one-day seminar will begin with a review of the basic principles of diesel engines and fuel injection systems. Diesel and alternative fuels will be discussed, followed by current and emerging diesel engine applications.
Training / Education

Ignition Issues and Their Impact on Engine Performance, Efficiency and Emission

Improved understanding and control of ignition and thereby combustion are critical in dealing with the problems of pollutants formation, engine performance, and fuel economy. This seminar will provide you with basic knowledge and recent advances in combustion-initiation (ignition) issues to more intelligently evaluate and harness their potentials. Thermodynamic and fluid mechanical properties of the unburned charge near the spark plug and at the time of ignition strongly affect the quality of the combustion and therefore the emission of the pollutants from the engine. Furthermore, a weak ignition limits engine performance and drivability.
Training / Education

Liquid Atomization, Sprays, and Fuel Injection

Liquid fuel atomization and spray formation is the heart of the majority of stationary and mobile power generation machines that we rely on. This seminar focuses on the process of liquid atomization and spray formation and how it relates to fuel injection systems and emission of pollutants in modern engines. The seminar begins with background coverage of terminology, the purposes of liquid atomization and spray formation, and different designs of atomizers and nozzles employed in various industries.
Training / Education

Turbocharging Internal Combustion Engines

The need to control emissions and maintain fuel economy is driving the use of advanced turbocharging technology in both diesel and gasoline engines. As the use of diesel engines in passenger car gasoline and diesel engines increases, a greater focus on advanced turbocharging technology is emerging in an effort to reap the benefits obtained from turbocharging and engine downsizing. This seminar covers the basic concepts of turbocharging of gasoline and diesel engines (light and heavy duty), including turbocharger matching and charge air and EGR cooling, as well as associated controls.
Training / Education

Fundamentals of Automotive Fuel Delivery Systems

The key to a vehicle's overall operation is the superior, quality design of its major moving subsystems. Automotive gasoline and diesel fuel delivery systems in particular must be virtually malfunction free for all components for the entire vehicle prescribed service life. Fuel systems must be robust and precise enough to store and deliver the appropriate amount of fuel to power the engine. These stringent requirements necessitate a basic understanding of the subsystem working principles, functionalities and interrelated components.
Training / Education

Automotive Heat Transfer

Heat transfer affects the performance, emissions and durability of the engine as well as the design, packaging, material choice and fatigue life of vehicle components. This course covers the broad range of heat transfer considerations that arise during the design and development of the engine and the vehicle with a primary focus on computational models and experimental validation covering the flow of heat from its origin in the engine cylinders and its transfer via multiple paths through engine components.
Training / Education

Introduction to Commercial and Off-Road Vehicle Cooling Airflow Systems

Vehicle functional requirements, emission regulations, and thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Given the expected increase in emission-related heat rejection, suppliers and vehicle manufacturers must work together as partners in the design, selection, and packaging of cooling system components. An understanding and appreciation of airflow integration issues and vehicle-level trade-offs that effect system performance are important to the team effort. The severe duty cycles, minimal ram air, and sometimes unconventional package layouts present unique challenges.
Training / Education

Variable Valve Actuation Design and Performance Impact on Advanced Powertrains

Engine valvetrain systems have become more capable and increasingly more compact in the quest to improve efficiency. The developments parallel the advancements in other key engine components such as fuel injection or spark systems, turbocharging, aftertreatment, base engine and controls. While the gasoline sector has seen a steady rise in the adoption of Variable Valve Actuation (VVA), Diesel systems have lagged behind and only a few systems have seen production. The level of VVA activity however in the Diesel sector is beginning to increase as tighter regulations of CO2 emissions approach.
Training / Education

The Basics of Internal Combustion Engines

In your profession, an educated understanding of internal combustion engines is required, not optional. This two-day technology survey seminar covers the most relevant topics - ranging from the chemistry of combustion to the kinematics of internal components of the modern internal combustion engine - for maximum comprehension. Attendees will gain a practical, hands-on approach to the basics of the most common designs of internal combustion engines, as they apply to the gaseous cycles, thermodynamics and heat transfer to the major components, and the design theories that embody these concepts.

Spark Plugs-Test Methods

This SAE Standard specifies the minimum performance recommendation for spark plugs intended for use in various internal combustion engines including Automotive, Marine, Motorcycle and Utility engine applications. This standard is not intended to supply information for spark plugs used in aircraft applications of any type.

Hydrocarbon Adsorber Test Procedure

This SAE Recommended Practice describes several procedures to test and measure the performance of a Hydrocarbon Adsorber device located in a vehicle air induction system and attempts to simulate various loading and purging cycles it could experience. The Hydrocarbon Adsorber device is used to adsorb the small amount of gasoline that is volatized in the air induction manifold after the vehicle engine is turned off. This gasoline vapor can travel through the air induction system and escape to the atmosphere, impacting the total allowable vehicle evaporative emissions level set by the EPA and California ARB. When the vehicle is restarted, the Hydrocarbon Adsorber device is purged of hydrocarbons with the fresh air flow and is designed to perform as life of the vehicle emission device as set by the EPA.

Impact testing of automotive fuel tanks

Drop testing and "sled" testing are used regularly to demonstrate integrity of plastic fuel systems. This document defines test method, application and rationale for fuel tank impact testing.

High Efficiency IC Engines, 2012

The 14 papers in this technical paper collection discuss high efficiency IC engines. Topics covered include engine downsizing, pressure boosting and turbocharging, intelligent combustion, low temperature and stratified charge, advanced fuel injection technologies, and more. The 15 papers in this technical paper collection discuss high efficiency IC engines. Topics covered include engine downsizing, pressure boosting and turbocharging, intelligent combustion, low temperature and stratified charge, advanced fuel injection technologies, and more.