Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Rubber Science and Technology

Rubber – a loosely cross-linked network of polymer chains that when strained to high levels will forcibly return to at or near it original dimensions. This course is designed to provide the participant with a thorough understanding of rubber’s engineering characteristics. This class will introduce the various sources of rubber, both natural and synthetic. The class will contrast the differences between rubber and plastics; including thermoplastic rubber. Detailed discussions on how to select the correct rubber polymer for the application, highlighting the pros and cons of each major rubber type.
Training / Education

Basics of Silicone Rubber Science and Technology

Silicone rubber is comprised of inorganic-organic polymers. These materials consist of an inorganic backbone with organic side groups attached to silicon atoms. This family of polymers possesses unmatched versatility giving the formulator and user multiple forms and methods to cross link the polymers into rubber materials having the widest service temperature range of any rubber material. This course is designed to provide the participant with a thorough understanding of silicone’s engineering characteristics.
Training / Education

Fundamentals of Fatigue Analysis

Fatigue is a structural failure mode that must be recognized and understood to develop products that meet life cycle durability requirements. In the age of lightweighting, fatigue strength is an important vehicle design requirement as engineers struggle to meet stringent weight constraints without adversely impacting durability. This technical concept course introduces the fatigue failure mode and analysis methods. It explains the physics of material fatigue, including damage accumulation that may progress to product failure over time, and it provides the needed foundation to develop effective fatigue prediction capabilities.
Training / Education

Introduction to Commercial and Off-Road Vehicle Cooling Airflow Systems

Vehicle functional requirements, emission regulations, and thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Given the expected increase in emission-related heat rejection, suppliers and vehicle manufacturers must work together as partners in the design, selection, and packaging of cooling system components. An understanding and appreciation of airflow integration issues and vehicle-level trade-offs that effect system performance are important to the team effort. The severe duty cycles, minimal ram air, and sometimes unconventional package layouts present unique challenges.
Training / Education

Damage Tolerance for Gas Turbine Engines

The simultaneous demands for reliability and minimum weight for aircraft and propulsion systems offer some of the most challenging technical problems that structural and safety engineers can encounter. Although much information is available on fracture mechanics and aircraft damage tolerance, this course specifically relates to damage tolerance for gas turbine engines. The need to consider damage tolerance more broadly in new engine designs has just recently been written into FAR 33.70 and new EASA guidelines.
Training / Education

Surface Texture Specification and Control

Surface texture is one of the most important topics in today"s world of design, development and performance. As tolerances are shrinking and performance demands are increasing, surface texture is rapidly becoming one of the most important aspects of engine and vehicle performance. Every moving component on a vehicle or engine is influenced by surface texture in one or more of the following ways: vibration, sealing, adhesion, traction, emissions, safety, durability, wear/failure analysis. Many of the industry"s top warranty issues (leaks, noise, vibration, etc.) are a direct result of surface texture implications.
Training / Education

Ignition Issues and Their Impact on Engine Performance, Efficiency and Emission

Improved understanding and control of ignition and thereby combustion are critical in dealing with the problems of pollutants formation, engine performance, and fuel economy. This seminar will provide you with basic knowledge and recent advances in combustion-initiation (ignition) issues to more intelligently evaluate and harness their potentials. Thermodynamic and fluid mechanical properties of the unburned charge near the spark plug and at the time of ignition strongly affect the quality of the combustion and therefore the emission of the pollutants from the engine. Furthermore, a weak ignition limits engine performance and drivability.
Training / Education

Turbocharging Internal Combustion Engines

The need to control emissions and maintain fuel economy is driving the use of advanced turbocharging technology in both diesel and gasoline engines. As the use of diesel engines in passenger car gasoline and diesel engines increases, a greater focus on advanced turbocharging technology is emerging in an effort to reap the benefits obtained from turbocharging and engine downsizing. This seminar covers the basic concepts of turbocharging of gasoline and diesel engines (light and heavy duty), including turbocharger matching and charge air and EGR cooling, as well as associated controls.
Training / Education

Control Systems Simplified

The advent of digital computers and the availability of ever cheaper and faster micro processors have brought a tremendous amount of control system applications to the automotive industry in the last two decades. From engine and transmission systems, to virtually all chassis subsystems (brakes, suspensions, and steering), some level of computer control is present. Control systems theory is also being applied to comfort systems such as climate control and safety systems such as cruise control or collision mitigation systems.
Training / Education

Corrosion Engineering and Prevention

The transportation industry, including motor vehicles, aircraft, rail, marine, commercial, off-road and defense vehicles, as well as infrastructures, energy sectors, raw materials, manufacturing, health and food industries all experience significant issues with corrosion which results in billions of dollars of loss each year. Corrosion education and prevention is essential to improve and increase the service life of parts and components which may have a significant impact on the economy of various industries and nations.
Training / Education

Fundamentals of Powertrain Design for Hybrid Electric Vehicles

This course is offered only in China. Driven by high fuel prices, environmental regulations, and consumer demand, the market for hybrid electric vehicles (HEV) has experienced rapid growth. Every major automotive company produces an HEV. There are approximately fifty different HEV models on the market and over eight million HEVs already sold. In order to meet current and future demands in the HEV and PHEV markets, success will depend on engineering personnel knowing how to develop and manufacture HEV powertrains. This two day seminar will cover the fundamentals of HEV powertrain design.
Training / Education

Fluids for Aerospace Hydraulic Systems

This four-hour short course provides an introduction to fluids for aerospace hydraulic systems. Topics covered include an introduction to basics fluid properties, rheology, tribology, and fluid product development. In addition, the history and performance of different classes of fluids are discussed in detail, and specific failure modes such as erosion and sludge formation will be described. Along with an introduction to fluid degradation, information on used oil analysis test methods and interpretation will be provided.
Training / Education

The Principles and Applications of Powertrain Controls for the New Energy Vehicles

课程概述 Powertrain controls for NEVs is one of the most complex and highly confidential areas of NEV research and development. This two-day course takes the seemingly complicated field of NEV powertrain controls and summarizes it into a few basic principles. The latest and most popular NEV powertrains are also reviewed to illustrate these principles and the controls strategies used. 对于新能源汽车来说,动力总成控制一直以来都是最复杂的和高度机密的领域之一。在这两天的课程中,我们将把看似复杂的动力总成控制系统总结出几条基本规则,同时,通过对当今其他车型动力控制系统的案例分析,来把这些规则和原理进行融会贯通。
Training / Education

Automotive Heat Transfer

Heat transfer affects the performance, emissions and durability of the engine as well as the design, packaging, material choice and fatigue life of vehicle components. This course covers the broad range of heat transfer considerations that arise during the design and development of the engine and the vehicle with a primary focus on computational models and experimental validation covering the flow of heat from its origin in the engine cylinders and its transfer via multiple paths through engine components.
Training / Education

Variable Valve Actuation Design and Performance Impact on Advanced Powertrains

Engine valvetrain systems have become more capable and increasingly more compact in the quest to improve efficiency. The developments parallel the advancements in other key engine components such as fuel injection or spark systems, turbocharging, aftertreatment, base engine and controls. While the gasoline sector has seen a steady rise in the adoption of Variable Valve Actuation (VVA), Diesel systems have lagged behind and only a few systems have seen production. The level of VVA activity however in the Diesel sector is beginning to increase as tighter regulations of CO2 emissions approach.
Training / Education

The Basics of Internal Combustion Engines

2020-11-16
In your profession, an educated understanding of internal combustion engines is required, not optional. This two-day technology survey seminar covers the most relevant topics - ranging from the chemistry of combustion to the kinematics of internal components of the modern internal combustion engine - for maximum comprehension. Attendees will gain a practical, hands-on approach to the basics of the most common designs of internal combustion engines, as they apply to the gaseous cycles, thermodynamics and heat transfer to the major components, and the design theories that embody these concepts.
Standard

Committee Charter

2014-04-09
WIP
MTL-14-AA
SAE Metallic Materials Testing Laboratories, is a technical Subcommittee in SAE’s Aerospace Materials Systems Group with the responsibility to develop and maintain material specifications and other SAE technical reports for Aerospace Metallic Materials Testing Requirements. The Subcommittee works in conjunction with related bodies such as the Performance Review Institute (PRI), and regulatory authorities such as FAA and EASA. The objectives of MTL are to: • Develop Aerospace Specifications (AS) for the control of materials testing specific to aerospace applications. • Provide a forum for the exchange of technical information related to aerospace materials testing. • Further the adaptation of industry sponsored material specifications through coordination with PRI and associated organizations. • Establish a system to ensure aerospace specifications are controlled.
Standard

Spark Plugs-Test Methods

2016-10-24
WIP
J3132
This SAE Standard specifies the minimum performance recommendation for spark plugs intended for use in various internal combustion engines including Automotive, Marine, Motorcycle and Utility engine applications. This standard is not intended to supply information for spark plugs used in aircraft applications of any type.
Standard

Hydrocarbon Adsorber Test Procedure

2010-09-01
WIP
J2952
This SAE Recommended Practice describes several procedures to test and measure the performance of a Hydrocarbon Adsorber device located in a vehicle air induction system and attempts to simulate various loading and purging cycles it could experience. The Hydrocarbon Adsorber device is used to adsorb the small amount of gasoline that is volatized in the air induction manifold after the vehicle engine is turned off. This gasoline vapor can travel through the air induction system and escape to the atmosphere, impacting the total allowable vehicle evaporative emissions level set by the EPA and California ARB. When the vehicle is restarted, the Hydrocarbon Adsorber device is purged of hydrocarbons with the fresh air flow and is designed to perform as life of the vehicle emission device as set by the EPA.
X