Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Parametric Study on CAI Combustion in a GDI Engine with an Air-Assisted Injector

2007-04-16
2007-01-0196
Controlled auto-ignition (CAI) combustion and engine performance and emission characteristics have been intensively investigated in a single-cylinder gasoline direct injection (GDI) engine with an air-assisted injector. The CAI combustion was obtained by residual gas trapping. This was achieved by using low-lift short-duration cams and early closing the exhaust valves. Effects of EVC (exhaust valve closure) and IVO (intake valve opening) timings, spark timing, injection timing, coolant temperature, compression ratio, valve lift and duration, on CAI combustion and emissions were investigated experimentally. The results show that the EVC timing, injection timing, compression ratio, valve lift and duration had significant influences on CAI combustion and emissions. Early EVC and injection timing, higher compression ratio and higher valve lift could enhance CAI combustion. IVO timing had minor effect on CAI combustion.
Technical Paper

Wall Temperature Effect on SI-CAI Hybrid Combustion Progress in a Gasoline Engine

2013-04-08
2013-01-1662
SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In order to investigate the effect of the thermal boundary condition on the hybrid combustion, the experiments with different coolant temperatures are performed to adjust the chamber wall temperature in a gasoline engine. The experimental results indicate that increasing wall temperature would advance the combustion phasing, enlarge the peak heat release rate and shorten the combustion duration. While the capacity of the wall temperature effect on the hybrid combustion characteristics are more notable in the auto-ignition dominated hybrid combustion.
Technical Paper

Disturbance Observation and Rejection Method for Gasoline HCCI Combustion Control

2013-04-08
2013-01-1660
Homogeneous charge compression ignition (HCCI) is a promising internal combustion engine concept, but suffers from its high sensitivity to operation conditions and disturbances, such as the intake temperature fluctuation, the load fluctuation or the in-cylinder temperature distribution variation. In this paper, a novel control method is proposed for a port-fuel-injected stoichiometric HCCI engine equipped with variable valve actuation (VVA). A first principle model is developed for controller synthesis with intake valve closing (IVC), exhaust valve closing (EVC), and injected fuel quantity as inputs and combustion timing (CA50), Gross IMEP and Lambda as outputs. The proposed method combines the features of model-based feedforward, decoupling, and active disturbance rejection control (ADRC), named MDDC for short, where the easily modeled cross-coupling and disturbances are compensated directly, while all the remaining uncertainties are estimated and mitigated in real time by ADRC.
X