Refine Your Search

Topic

Author

Affiliation

Search Results

Video

High Load HCCI Operation Using Different Valving Strategies in a Naturally-Aspirated Gasoline HCCI Engine

2012-02-16
This session focuses on kinetically controlled combustion. Experimental and simulation studies pertaining to various means of controlling combustion are welcome. Examples are research studies dealing with temperature and composition distribution inside the cylinder and their impact on heat release process. Studies clarifying the role of fuel physical and chemical properties in autoignition are also welcome. Presenter Hanho Yun, General Motors Company
Technical Paper

NVH Comfort of Range Extenders for Electric Vehicles

2020-09-30
2020-01-1551
The most appreciated driving characteristics of electric vehicles are the quietness and spontaneous torque rise of the powertrain. The application of range extenders (REX) with internal combustion engines (ICEs) to increase the driving range is a favourable solution regarding costs and weight, especially in comparison with larger battery capacities. However, the NVH integration of a REX is challenging, if the generally silent driving characteristics of electric vehicles shall remain preserved. This paper analyses key NVH aspects for a REX design and integration to fulfil the high expectations regarding noise and vibration comfort in an electric vehicle environment. The ICE for a REX is typically dimensioned for lower power outputs, incorporating a low number of cylinder units, which is even more challenging concerning the NVH integration. The basic REX concept is evaluated by considering power and fuel efficiency demands in combination with an interior noise forecast.
Technical Paper

Sludge and Varnish Evaluation of Polyether Amine Gasoline Fuel Additives at “Complete Fuel System Cleaner” Aftermarket Fuel Additive Concentrations

2020-09-15
2020-01-2100
Sludge and Varnish deposits that can build up in the crankcase originate in large part from fuel and fuel components that enter the crankcase through blow-by. These deposits can lead to a variety of engine issues including piston skirt deposits, cylinder bore scuffing, stuck lifters and oil filter plugging. A test has been developed to evaluate the contribution of “Complete Fuel System Cleaner” (CFSC) aftermarket fuel additives to crankcase sludge and varnish deposit formation. CFSC aftermarket fuel additives are typically formulated with polyether amine (PEA) chemistry and at concentrations that exceed 2000ppm. Three different commercially-available CFSC products were tested, containing two different classes of PEA chemistry - propylene oxide-based PEA (“PO-PEA”) and butylene oxide-based PEA (“BO-PEA”). Two of the three products contained the same PO-PEA chemistry, but at different concentrations, to show the effect of additive dosage.
Book

Design of Racing and High Performance Engines

1995-02-01
This book presents, in a clear and easy-to-understand manner, the basic principles involved in the design of high performance engines. Editor Joseph Harralson first compiled this collection of papers for an internal combustion engine design course he teaches at the California State University of Sacramento. Topics covered include: engine friction and output; design of high performance cylinder heads; multi-cylinder motorcycle racing engines; valve timing and how it effects performance; computer modeling of valve spring and valve train dynamics; correlation between valve size and engine operating speed; how flow bench testing is used to improve engine performance; and lean combustion. In addition, two papers of historical interest are included, detailing the design and development of the Ford D.O.H.C. competition engine and the coventry climax racing engine.
Technical Paper

Injection Process of the Synthetic Fuel Oxymethylene Ether: Optical Analysis in a Heavy-Duty Engine

2020-09-15
2020-01-2144
Oxygenated synthetic fuels such as oxymethylene ether (OME) are a promising approach to reduce the emissions of diesel engines and to improve sustainability of mobility. The soot-free combustion of OME allows an optimization of the combustion process to minimize remaining pollutants. Considering the injection system, one strategy is to decrease the rail pressure, which has a positive impact on the reduction of nitrogen oxides without increasing the particle formation. Furthermore, due to the reduced lower heating value of OME compared to diesel fuel, an adaptation of the injector nozzle is recommended. This work describes a method for analyzing the injection process for OME, using the Mie scattering effect in an optically accessible heavy-duty diesel engine. The design of the 1.75 l single cylinder engine allows operation up to 300 bar peak cylinder pressure, providing optical access through the piston bowl and through a second window lateral below the cylinder head.
Technical Paper

The Influence of Fuel Characteristics on Engine Acceleration

1928-01-01
280043
SELECTION of a method and development of apparatus enabling precise and detailed measurement of engine acceleration is discussed in the first portion of this paper, the latter portion of which is concerned with the experimental results thereby obtained. Previous work on the influence of engine conditions on acceleration is generally substantiated. A method is described for approximately deriving the effective air-fuel ratio delivered to the cylinders during acceleration, practical applications are suggested, and limitations are discussed. The effect of fuel volatility on engine acceleration was studied, using six fuels: Aviation gasoline; commercial gasoline; a blend composed of equal parts of the two; and three especially prepared fuels, all of which have equal 20 and 90-per cent points but differ widely at the 50-per cent point. It is shown that the relative values of these fuels for acceleration depend upon the amount of vaporization in the manifold.
Technical Paper

Automobile Practice in Europe

1928-01-01
280037
EUROPEAN trends in some of the major features of engine, chassis and body design and in several items of equipment are reviewed in this paper; which is based on the observation and analysis of the British engineer editor who is its author, and of the staff of The Motor, of London, during the last five years. Although American automotive engineers who follow European practice are acquainted with most of the designs here shown and described briefly, this paper is of interest and value as showing the present principal lines along which development is taking place abroad. Popular chassis types are divided into three classes: (a) the “baby” four-cylinder car of 7 to 9 hp., Royal Automobile Club rating; (b) the “family-type” four-cylinder car of 12 to 14-hp. rating; and (c) the light six-cylinder car of 15 to 20-hp. rating. Typical acceleration curves for well-known cars in each of these classes are given, as well as cylinder dimensions, volumetric capacity, car weight and price.
Technical Paper

Progress in Honing-Machines and the Honing Process

1928-01-01
280060
CYLINDER finishing by rough and finish-boring with wide tools, which was thought good enough during the first dozen years of the automobile-production period, was supplanted by reaming and grinding. Later, cast-iron and copper laps were used, but all these methods were slow and did not produce the fine finish for which a demand developed. Experiments were begun about 1920 with the process known as honing. Five years later the company with which the author is connected converted one of its drilling-machines into a single-spindle honing-machine. Other companies made similar conversions. The first honing-head was introduced in 1923. Not until three years ago, however, did honing begin to be regarded as a real production-method possibility. Since then, very rapid progress has been made and numerous improved machines, honing-heads and honing-stones have been produced.
Technical Paper

The Packard X 24-Cylinder 1500-Hp. Water-Cooled Aircraft Engine

1928-01-01
280064
AFTER outlining the history of development of the Packard X engine, the author states the legitimate position in aviation deserved by the water-cooled aviation-engine of this type and predicts large increases in the size, speed and carrying capacity of airplanes within the near future. Passing then to a discussion of the important features of the X-type engine, various illustrations of its parts are commented upon. The cylinders are built-up from steel forgings, with all welds arranged so as to be subjected to no excessive alternating stresses. The novel features of this cylinder design lie in the fact that the valve seats are entirely surrounded by water and that water space is provided above the combustion-chamber and below the top plate of the cylinder. The cylinder-head is extremely rigid, resisting deflection and assuring the maximum integrity of valve seats. The valve ports are machined integrally with the cylinder-head and are not welded thereto as in the Liberty engine.
Technical Paper

The High-Speed Diesel Engine as a Competitive Power Generator

1928-01-01
280055
HEREIN the author analyzes the Diesel oil-engine as a competitor of the steam engine and, more specifically, of the gasoline engine, in the stationary-power field and in the field of marine and land transportation. The two bases for judging the new as against the old are, first, suitability for the purpose, and, second, the cost of performing the required service. After reviewing other fields in which the oil-engine has shown its suitability, the author considers its suitability for automotive purposes. If it is equally suitable with the gasoline engine for motor-vehicles, that type of engine which shows lower cost for power will ultimately prevail; or, if the Diesel-engine cost is sufficiently lower, this type may be adopted for certain automotive uses even though it is somewhat inferior to the gasoline engine in suitability.
Technical Paper

Diesel Engines for Aircraft

1929-01-01
290057
ALTHOUGH the author and his associates have designed, built and tested a Diesel airplane-engine, a description of the mechanical details is omitted because the engine is still in the experimental stage. The general subject of Diesel engines for aircraft is therefore presented in its broader aspects. Typical indicator-diagrams of a gasoline engine and of a Deisel engine are compared as a means of ascertaining whether the pessimistic attitude that the Diesel engine cannot be made light enough for aircraft-propulsion purposes is justified. These considerations lead to the statement that, since a practicable Diesel aircraft-engine must run at speeds five or six times as fast as the stationary or marine-type of Diesel powerplants, whereas the ignition time-lag is substantially the same, it can be seen that the high-speed engine demands a different type of combustion than does the low-speed Diesel.
Technical Paper

The Wright Whirlwind-Engine Production Methods

1927-01-01
270062
REMARKABLE performance of the Wright Whirlwind J-5 engine in the transatlantic and transpacific flights of Lindbergh, Chamberlin, Byrd, Maitland, Smith, Goebel, Jensen and Brock in the summer just closed makes this paper of great timely interest. Methods of manufacture and testing that result in a degree of perfection which enables an engine to function continuously at high speed at almost full load for 40 hr. without the failure of a single part even momentarily must be of prime importance to all internal-combustion-engine production-engineers who hold reliability as an ideal. Extraordinary vigilance at every stage of production of every part is revealed by a reading of the paper to be the major factor contributing to success of the engine. Repeated tests and inspections are made of parts in process and of the engine after it is assembled.
Technical Paper

Effect of a Centrifugal Supercharger on Fuel Vaporization

1929-01-01
290077
SUPPLEMENTING the results of an investigation at the Massachusetts Institute of Technology on supercharging a single-cylinder automobile engine which were presented at the 1928 Annual Meeting, this paper reports a study that was made to determine whether the mechanical action of a high-speed centrifugal supercharger improves engine performance by increasing the degree of atomization and vaporization of the fuel in the inlet manifold. While changes in the degree of fuel atomization and vaporization might be measured directly by sampling the gases as they pass to each cylinder, an indirect evaluation of these changes by measuring their effect on engine performance was considered more practicable. Tests were made on a six-cylinder automobile engine connected to an electric cradle-dynamometer.
Technical Paper

Mixture Distribution

1930-01-01
300007
HOPING that discussion and dissemination of information on the fundamentals of distribution routine will continue, the author reiterates known facts, which include (a) the method of charting distribution progress, (b) a suggestion for locating the error in distribution and (c) a series of thoughts on construction. The paper is divided into two parts, the first being a study of distribution routine and the other a discussion of a few of the problems that are met every day in the search for perfect distribution. Complete satisfactory distribution and the quantitative measurement of its quality are the two major problems of distribution. The interrelation of these problems is mentioned and the complexity of the subject of distribution is emphasized by listing nine detailed factors, the point being made that if the information that engineers have on these items could be collected and codified considerable progress would be made.
Technical Paper

Cold Carburetion

1930-01-01
300006
EXPERIMENTS made and methods employed to obtain satisfactory engine operation without the addition of heat to the fuel-air mixture are described, as it is known that the power output of an engine is greater as the temperature of the mixture is lower and that higher compression can be used with lower mixture-temperature. The work was initiated with a single-cylinder engine in which kerosene was used as a fuel to ascertain the results that could be obtained without vaporizing the fuel in the manifold, the liquid being added to the air in the valve-chamber as the air entered the combustion-chamber. As satisfactory results followed, the next step was to devise and apply a mechanism based on the same principle to a multi-cylinder engine. The first and succeeding carbureter-manifold combinations used are illustrated and described.
Technical Paper

Aluminum Cylinder Heads Urged as Way to Better Design

1933-01-01
330007
MEASURED gains in performance obtained by using aluminum instead of iron for cylinder head material come from the increased compression ratios possible, Mr. Kishline says, and recommends higher ratios “as a logical means for the engineer to use in creating better transportation.” He gives actual figures taken from observed dynamometer performance showing comparable results on similar engines with aluminum and iron cylinder heads. Desirable features of aluminum heads are presented, after which are discussed design improvements necessary if such heads are to be used successfully. Differences in combustion phenomena resulting from use of iron and aluminum heads also are outlined.
Technical Paper

Commercial Application of Diesel Engines in Heavy-Duty Motorcoaches and Trucks

1932-01-01
320070
COMPARATIVE tests were made, both on the block and in the same motorcoach chassis, of a 525-cu.-in. gasoline and a 495-cu.-in. Diesel engine. The block tests are reported fully in charts, including curves for torque and power against piston displacement and engine weight. Corrected curves are given on the basis of equal piston displacement and for the Diesel engine throttled enough so that it would not smoke. Road tests included fuel consumption, acceleration, hill climbing and top speed, which are also recorded in charts. Other sections of the paper deal with costs of manufacture and maintenance and present and prospective conditions as to supply and cost of Diesel fuel. Stress is laid on the facts that automotive Diesel engines require a much higher grade of fuel than do the larger and slower Diesel units and that more gasoline than fuel oil can be obtained from a given amount of crude.
Technical Paper

Bending Moments in the Master Rod of a Radial Aircraft Engine

1932-01-01
320069
HEREIN are presented the results of an investigation of the bending moments in the master rod of a radial aircraft engine by a graphical method, and a simple formula derived therefrom for approximating this moment in similar engines. The bending stress in the master rod comes from turning moments about the crankpin axis caused by the action of the articulated rods due to gas-pressure and inertia forces and also by the inertia forces in the master rod itself. Charts are presented that show the magnitude and fluctuation of these turning moments. Accurate computation of these moments involves much tedious work. A method of approximating them with sufficient accuracy for engineering purposes is given for the case of a nine-cylinder radial aircraft engine. The method is applicable also to non-radial engines and to radial engines having other than nine cylinders, but in these cases investigation of the turning moments due to the gas loads in certain cylinders seems advisable.
Technical Paper

How the Design Engineer Views Manufacturing

1932-01-01
320064
AS engineering standards have risen, the need for production ingenuity has become greater than ever before. The engineer looks to the shop for major assistance in realizing his ideals of improved products. He expects the shop voluntarily to reduce the variations from dimensional specifications and to improve its facility to meet changes in design. Refinement in design is useless unless the shop can accurately hold the dimensions. Powerplant characteristics are largely controlled by the accuracy of centers and roundness and straightness of bores in cylinders and bearings. Crankshaft balance, quiet valve tappets and uniformity of weight and fit of reciprocating parts are all dependent upon accuracy of machine operations. To be able to make design changes in the product without great expense is vitally important. Tools must be designed with facility for change. Fixed-center boring machines are to blame for considerable engine trouble and may make design changes prohibitively expensive.
Technical Paper

Scavenging by Large Valve-Overlap Increases Power and Economy

1933-01-01
330044
SINCE the power output of an engine is practically proportional to the weight of the charge, the object has been to increase the weight of the charge burned. The weight of charge inducted by an aircraft engine and the supercharger power required to supply this charge depend among other factors upon how completely the engine is scavenged. In the conventional four-stroke-cycle engine only the exhaust gases in the displacement volume are forced out of the cylinder by the piston on the exhaust stroke; consequently, the engine cannot induct a charge of greater volume than that of the displacement volume, whereas if the clearance volume could be scavenged also, the engine could induct a charge equal to the displacement plus the clearance volume.
X