Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Spray Characteristics of Biodiesel and Diesel Fuels under High Injection Pressure with a Common Rail System

2010-10-25
2010-01-2268
Biodiesel has been paid more and more attention as a renewable fuel due to some excellent properties such as renewable, high cetane number, ultralow sulfur content, no aromatic hydrocarbon, high flash point, low CO2 emission when compared with diesel. While others physical properties like high viscosity, high surface tension, big density and bad volatility would spoil the spray characteristics of biodiesel fuel, which will affect the thermal efficiency when running in diesel engine. Accompanied with constant volume vessel and high speed video camera system, a high pressure common rail system, which could provide an injection pressure of 180 MPa, is used to investigate the characteristics of jatropha curcas biodiesel, palm oil biodiesel and diesel fuel. The effects of injection pressures and ambient densities on spray characteristics of these fuels are studied.
Technical Paper

A Study on the Factors Affecting Heated Wall Impinging Characteristics of SCR Spray

2011-04-12
2011-01-1311
Many studies show that under diesel engine operating conditions, SCR reductant sprays will impinge on the wall of exhaust pipes. In order to understand this impinging process of SCR reductant spray, and to analyze what factors affect it, a test bench was set up by means of high speed video camera. At atmospheric pressure, SCR spray was injected on a heated metal wall, the impacts of wall temperature, injection pressure, injection height and angle on developing characteristics of SCR reductant spray after impinging on the heated wall have been researched and analyzed. The results show that the heated wall temperature has a great impact on the spray developing process, when wall temperature is lower than 405K, after water evaporated the crystallized urea will remain on the wall to block exhaust pipes. When wall temperature is higher, the atomization and evaporation of SCR reductant spray will be better, and the hydrolysis process of urea will be faster.
Technical Paper

Theoretical and Practical Mechanisms on Lowering Exhaust Emission Levels for Diverse Types of Spark Ignition Engines

2008-06-23
2008-01-1545
The exhaust aftertreatment strategy is one of the most fundamental aspects of spark ignition engine technologies. For various types of engines (e.g., carburetor engine, PFI engine and GDI engine), measuring, purifying, modeling, and control strategies regarding the exhaust aftertreatment systems vary significantly. The primary goal of exhaust aftetreatment systems is to reduce the exhaust emission levels of NOx, HC and CO as well as to lower combustion soot. In general, there is a tradeoff among different engine performance aspects. The exhaust catalytic systems, such as the three way catalyst (TWC) and lean NOx trap (LNT) converters, can be applied together with the development of other engine technologies (e.g., variable valve timing, cold start). With respect to engine soot, some advanced diagnosing techniques are essential to obtain thorough investigation of exhaust emission mechanisms.
Technical Paper

Cyclic Variations of Argon Power Cycle Engine with Fuel of Hydrogen

2017-10-08
2017-01-2409
The work of this paper aimed at investigating the cyclic variations of argon power cycle engine with fuel of hydrogen at lean burn operating conditions. The engine had been modified based on a 0.402 L, single-cylinder diesel engine into spark ignition engine with a port fuel injection system. The influencing factors on the cyclic variations, such as ignition timing, engine speed and compression ratio, were tested in this study. In all tests, the throttle opened at 0%, and the excess oxygen coefficient was maintained at 2.3. The results showed that as the ignition timing retards, CoVPmax and CoV(dp/dφ)max of argon power cycle engine increased, while CoVIMEP decreased firstly and increased afterward. And there is an ignition timing to make the lowest CoVIMEP, which is not consistent with MBT.
Technical Paper

Effect of Direct Water Injection Timing on Common Rail Diesel Engine Combustion Process and Efficiency Enhancement

2017-10-08
2017-01-2281
The present work aims at optimizing diesel engine combustion efficiency with optimized water injection strategy. The engine had been modified based on a two-cylinder mechanical pump diesel engine into common rail diesel engine with capability of direct water injection. The direct water injection system was designed and manufactured independently. An air-fluid booster was utilized to establish the water injection pressure up to 40MPa. Customized diesel injector was selected to be used as water injector in this study. Water injection strategy was optimized in detail with injection timing around TDC which ranges from 12°CA BTDC to -5°CA BTDC under 10 bar IMEP. The engine efficiency can be improved under selected water injection strategy due to the increment of work fluid in the combustion chamber. Moreover, the nitric oxides emissions show decrement around 10%.
Technical Paper

Homogeneous Charge Preparation of Diesel Fuel by Spray Impingement onto a Hot Surface at Intake Manifold

2006-10-16
2006-01-3322
A segment of steel tube with the inner diameter of 60 mm and length of 100 mm was fixed between the intake manifold and cylinder head in a direct injection natural aspirated diesel engine. The surface of the tube could be heated to be above 400 °C by the heater enwrapped outside within several minutes under the power less than 600 W. The tip of an injector traditionally used for in-cylinder diesel direct injection was extended to the axis of the tube. The diesel sprays could impinge onto the hot inner surface of the tube and atomize quickly if the temperature of the tube was high enough. Then the fuel-air mixture would be sucked into the cylinder, and HCCI combustion could be fulfilled. The vaporization ratio of the impinged diesel sprays was estimated by fuel consumption, intake air flux and excess air coefficient (λ) calculated from the volumetric concentration of O2, CO2 and CO emissions. The NOx emission was always very low.
Journal Article

Impact of Control Methods on Dynamic Characteristic of High Speed Solenoid Injectors

2014-04-01
2014-01-1445
Accurate control of both the timing and quantity of injection events is critical for engine performance and emissions. The most serious problem which reduces the accuracy of the control operation in such systems is a time delay of the responsiveness for the opening and closing operation of the electromagnetic valve. Modern electronic control systems should be capable of driving high speed solenoid injectors at a very fast switch frequency with high efficiency and acceptable power requirements. In this paper, the dynamic characteristic of a high speed servo-hydraulic solenoid injector for diesel engine, with different driving circuits and control methods, is investigated. A pre-energizing control strategy based on a dual power supply is applied to speed up the opening response time of the injectors.
Journal Article

Effect of Injection Parameters on Spray Characteristics of Urea-SCR System

2013-04-08
2013-01-1067
Urea-SCR system is one of the after-treatment methods for diesel engines, which could effectively reduce the NOX emissions and enable diesel engines to meet increasingly stringent emission legislations. Within the urea-SCR system, characteristics of urea-solution spray, especially the distribution uniformity of spray droplets as well as gaseous NH₃ within the exhaust pipe, play an important role in the efficiency of catalytic reduction. In this paper, an SCR spray visualization test bench was set up. Urea-solution from a non-air-assist injector is injected into the steady stream of simulated exhaust gas flow. The transient characteristics of spray are recorded by high-speed photography. Specific spray characteristics in the original photographs, i.e., mixing distance and degree of uniformity are extracted. The influence of injection pressure and injection angle on spray characteristics are tested in different sets of experiments.
Journal Article

Study of the Combustion Characteristics of a HCCI Engine Coupled with Oxy-Fuel Combustion Mode

2017-03-28
2017-01-0649
The present work proposed to implement oxy-fuel combustion mode into a homogeneous charge compression ignition engine to reduce complexity in engine emissions after-treatment and lower carbon dioxide emission. The combination of oxy-fuel combustion mode with homogeneous charge compression ignition engine can be further optimized by the utilization of direct high temperature and pressure water injection to improve cycle performance. A retrofitted conventional diesel engine coupled with port fuel injection and direct water injection is utilized in this study. A self-designed oxygen and carbon dioxide mixture intake system with flexible oxygen fraction adjustment ability is implemented in the test bench to simulate the adoption of exhaust gas recirculation. Water injection system is directly installed in the combustion chamber with a modified high speed solenoid diesel injector.
Technical Paper

Numerical study of Intake Manifold Water Injection on Performance and Emissions in a Heavy-duty Nature Gas Engine

2019-04-02
2019-01-0562
The performance of heavy-duty nature gas engines has been limited by combustion temperature and NOx emissions for a long time. Recently, water injection technology has been widely considered as a technical solution in reducing fuel consumption and emissions simultaneously in both diesel and gasoline engines. This paper focuses on the impacts of intake manifold water injection on characteristics of combustion and emissions in a heavy-duty nature gas engine through numerical methods. A detailed numerical model was established and validated with experimental data of pressure traces in CFD software coupled with detailed chemical kinetics. The simulation was mainly carried out under low speed and full load condition, and knock level was also measured and calculated by Logarithmic Knock Intensity (LKI). The results show that intake manifold water injection is an efficient way to reduce high NOX emissions in nature gas engines without deteriorating other emissions characteristics.
Journal Article

Spray Hot-impingement System Optimization for Premixed Diesel Homogeneous Charge Preparation

2008-04-14
2008-01-0014
In this study, a spray hot-impingement system was set up to analyze the spray characteristics when spray impinged onto a flat hot surface by high-speed photography technology. The angle between spray axis and normal line of the flat surface could be changed, and the surface temperature could exceed 400°C. The influences of surface temperature and heating power on spray atomization were investigated too. At atmospheric pressure, when the wall temperature was 340∼380°C, the impinging diesel spray was well atomized. In this experiment, the wall heating power could be set at 1∼25 Wcm-2. When the heating power was about 1.6 Wcm-2, the impinging spray atomized well, and when it was about 10.1 Wcm-2 the spray atomized better though the heating power requirement should be high.
X