Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Diesel Engine Technology Engineering Academy

This Academy covers the diesel engine engineering principles and the role it can play in the electrification of the transportation system. Several types of diesel engines are addressed with a review of their efficiency including how they might support the drive towards electrification. It is an intensive learning experience comprised of lecture and structured practical sessions, including a team-solved case study problem and/or a review and analysis of current issues facing the diesel industry. Evening sessions are included. Attendees will receive a copy of the textbook, Diesel Emissions and Their Control, by lead instructor Magdi K.
Training / Education

Common Rail Diesel Fuel Injection

2019-08-14
The improved efficiencies of the modern diesel engine have led to its increased use within the mobility industry. The vast majority of these diesel engines employ a high-pressure common rail fuel injection system to increase the engine's fuel-saving potential, emissions reduction, and overall performance. This one-day seminar will begin with a review of the basic principles of diesel engines and fuel injection systems. Diesel and alternative fuels will be discussed, followed by current and emerging diesel engine applications.
Training / Education

Diesel Engine Noise Control

2019-07-23
This web seminar provides an in-depth overview of diesel engine noise including combustion and mechanical noise sources. In addition, the instructor will discuss a system approach to automotive integration including combining sub-systems and components to achieve overall vehicle noise and vibration goals.
Training / Education

Fundamental Concepts of Turbocharging Modern Engines Current Practices and Trends

2019-06-18
Turbocharging is rapidly becoming an integral part of many internal combustion engine systems. While it has long been a key to diesel engine performance, it is increasingly seen as an enabler in meeting many of the efficiency and performance requirements of modern automotive gasoline engines. This web seminar will discuss the basic concepts of turbocharging and air flow management of four-stroke engines. The course will explore the fundamentals of turbocharging, system design features, performance measures, and matching and selection criteria.
Training / Education

Engine Failure Investigation and Analysis

2019-03-25
Engine failures can occur in a variety of equipment, vehicles, and applications. On occasion, a single vehicle type or equipment family will even experience multiple engine failures leading to the inevitable need to determine what the most likely cause of one or all of those failures was. This comprehensive seminar introduces participants to the methods and techniques used to understand the types of variables and inputs that can affect engine reliability and then determine the most likely cause of an individual engine or group of engine failures in the field.
Collection

Multi-Dimensional Engine Modeling, 2018

2018-04-03
This collection covers advances in the development and application of models and tools involved in multi-dimensional engine modeling: advances in chemical kinetics, combustion and spray modeling, turbulence, heat transfer, mesh generation, and approaches targeting improved computational efficiency. Papers employing multi-dimensional modeling to gain a deeper understanding of processes related to turbulent transport, transient phenomena, and chemically reacting, two-phase flows are included in this collection.
Book

Concepts in Turbocharging for Improved Efficiency and Emissions Reduction

2014-09-22
Legislative requirements to reduce CO2 emissions by 2020 have resulted in significant efforts by car manufacturers to explore various methods of pollution abatement. One of the most effective ways found so far is by shortening the cylinder stroke and downsizing the engine. This new engine then needs to be boosted, or turbocharged, to create the full and original load torque. Turbocharging has been and will continue to be a key component to the new technologies that will make a positive difference in the next-generation engines of years to come. Concepts in Turbocharging for Improved Efficiency and Emissions Reduction explores the many ways that turbocharging will deliver concrete results in meeting the new realities of sustainable, green transportation.
Standard

Fuel Injection Equipment Nomenclature

1999-04-21
HISTORICAL
J830_199904
This SAE Standard establishes a vocabulary and definitions relating to the components used in fuel injection systems for compression ignition (diesel) engines. Definitions are separated into six sections by topic as follows: Section 3— Fuel Injection Pumps Section 4— Fuel Injectors Section 5— Unit Injectors Section 6— Governors Section 7— Timing Devices Section 8— High Pressure Pipes and Connections NOTE— When the word "fuel" is used in the terms listed it may be omitted providing there can be no misunderstanding.
Standard

Physical and Chemical Properties of Engine Oils

2006-11-06
HISTORICAL
J357_200611
This SAE Information Report reviews the various physical and chemical properties of engine oils and provides references to test methods and standards used to measure these properties. It also includes general references on the subject of engine oils, base stocks, and additives.
Standard

Physical and Chemical Properties of Engine Oils

2016-01-19
CURRENT
J357_201601
This SAE Information Report reviews the various physical and chemical properties of engine oils and provides references to test methods and standards used to measure these properties. It also includes general references on the subject of engine oils, base stocks, and additives.
Standard

Vehicle Electronic Programming Stations (VEPS) System Specification for Win32®

2013-09-23
CURRENT
J2461_201309
SAE J2461 specifies the recommended practices of a Vehicle Electronics Programming Stations (VEPS) architecture.in a Win32® environment. This system specification, SAE J2461, was a revision of the requirements for Vehicle Electronics Programming Stations (VEPS) set forth in SAE J2214, Vehicle Electronics Programming Stations (VEPS) System Specification for Programming Components at OEM Assembly Plants (Cancelled Jun 2004). The J2214 standard has been cancelled indicating that it is no longer needed or relevant.
Standard

Sleeve Type Half Bearings

2011-06-10
CURRENT
J506_201106
This SAE Standard defines the normal dimensions, dimensioning practice, tolerances, specialized measurement techniques, and glossary of terms for bearing inserts commonly used in reciprocating machinery. The standard sizes cover a range which permits a designer to employ, in proper proportion, the durability and lubrication requirements of each application, while utilizing the forming and machining practices common in manufacture of sleeve type half bearings. Not included are considerations of hydrodynamic lubrication analysis or mechanical stress factors of associated machine structural parts which determine the nominal sizes to be used, selection of bearing material as related to load carrying capacity, and economics of manufacture. For information concerning materials, see SAE J459 and SAE J460. These suggested sizes provide guidelines which may result in minimal costs of tooling but do not necessarily represent items which can be ordered from stock.
Standard

Diesel Engines - Steel Tubes for High-Pressure Fuel Injection Pipes (Tubing)

2015-11-24
CURRENT
J1958_201511
This SAE Standard specifies dimensions and requirements for single-wall steel tubing intended for use as high-pressure fuel injection pipes on a wide range of engines (Class A), and for fuel injection pump testing (Class B, Reference SAE J1418). Tubing shall be cold drawn, annealed or normalized, seamless tubing suitable for cold swaging, cold upsetting, and cold bending.
Standard

Diesel Engines--Steel Tubes for High-Pressure Fuel Injection Pipes (Tubing)

1995-06-01
HISTORICAL
J1958_199506
This SAE Standard specifies dimensions and requirements for single-wall steel tubing intended for use as high-pressure fuel injection pipes on a wide range of engines (Class A), and for fuel injection pump testing (Class B, Reference SAE J1418). Tubing shall be cold drawn, annealed or normalized, seamless tubing suitable for cold swaging, cold upsetting and cold bending.
Standard

Diesel Engines—Steel Tubes for High-Pressure Fuel Injection Pipes (Tubing)

2002-10-25
HISTORICAL
J1958_200210
This SAE Standard specifies dimensions and requirements for single-wall steel tubing intended for use as high-pressure fuel injection pipes on a wide range of engines (Class A), and for fuel injection pump testing (Class B, Reference SAE J1418). Tubing shall be cold drawn, annealed or normalized, seamless tubing suitable for cold swaging, cold upsetting, and cold bending.
Standard

Diesel Engines--Steel Tubes for High-Pressure Fuel Injection Pipes (Tubing)

1989-04-01
HISTORICAL
J1958_198904
This SAE Standard specifies dimensions and requirements for single-wall steel tubing intended for use as high-pressure fuel injection pipes on a wide range of engines (Class A), and for fuel injection pump testing (Class B, Reference SAE J1418). Tubing shall be cold drawn, annealed or normalized, seamless tubing suitable for cold swaging, cold upsetting, and cold bending.
Standard

WROUGHT NICKEL AND NICKEL-RELATED ALLOYS

1976-07-01
HISTORICAL
J470_197607
This Report presents general information on over 50 alloys in which nickel either predominates or is a significant alloying element. It covers primarily wrought materials, and is not necessarily all inclusive. Values given are in most cases average or nominal, and if more precise values are required the producer(s) should be contacted. This report does not cover the so-called "superalloys," or the iron base stainless steels. Refer to SAE J467, Special Purpose Alloys, and SAE J405, Chemical Compositions of SAE Wrought Stainless Steels, respectively, for data on these alloys.
Standard

Wrought Nickel and Nickel-Related Alloys

2018-02-15
CURRENT
J470_201802
This Report presents general information on over 50 alloys in which nickel either predominates or is a significant alloying element. It covers primarily wrought materials, and is not necessarily all inclusive. Values given are in most cases average or nominal, and if more precise values are required the producer(s) should be contacted. This report does not cover the so-called "superalloys," or the iron base stainless steels. Refer to SAE J467, Special Purpose Alloys, and SAE J405, Chemical Compositions of SAE Wrought Stainless Steels, respectively, for data on these alloys.
Standard

Voltages for Diesel Electrical Systems

1976-09-01
HISTORICAL
J539A_197609
This SAE Recommended Practice is intended to apply to lamps, batteries, heaters, radios, and similar equipment for operation with mobile or automotive diesel engines. Twenty-four V systems have long been used for heavy duty services because 24 V permit operating 12 V systems in series-parallel. Thirty-two V systems have been used for marine, railroad-car lighting, and other uses. Generators, storage batteries, starting motors, lighting, and auxiliary electrical equipment shall be for nominal system ratings of 12, 24, or 32 V as determined by the power requirements of the application. It is recommended that no intermediate voltages be considered. The combination of a 24 V starting motor and two 12 V batteries connected in series for cranking is considered practice where it can be adapted to the installation.
X