Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Study of Crevice HC Mechanism Based on the Transient HC Test Data and the Double Zone Combustion Model

2008-06-23
2008-01-1652
The effectiveness of after-treatment systems depends on the exhaust gas temperature, which is low during cold-start. As a result, Euro III, Euro IV and FTP75 require that the emissions tests include exhaust from the beginning of cold start. It is proved that 50%∼80% of HC and CO emissions are emitted during the cold start and the amount of unburned fuel from the crevices during starting is much higher than that under warmed engine conditions. The piston crevices is the most part of combustion chamber crevices, and results of mathematical simulations show that the piston crevice contribution to HC emissions is expected to increase during cold engine operation. Based on the transient HC test data and the double zone combustion model, this paper presents the study of the crevice HC Mechanism of the first firing cycle at cold start on an LPG SI Engine. A fast-response flame ionization detector (FFID) was employed to measure transient HC emissions of the first firing cycle.
Technical Paper

Effects of Lubricant Additives on Auto-Ignition under a Hot Co-Flow Atmosphere

2017-10-08
2017-01-2231
Pre-ignition may lead to an extreme knock (super-knock or mega-knock) which will impose a severe negative influence on the engine performance and service life, thus limiting the development of downsizing gasoline direct injection (GDI) engine. More and more studies reveal that the auto-ignition of lubricants is the potential source for pre-ignition. However, pre-ignition is complicated to study on the engine test bench. In this paper, a convenient test method is applied to investigate the influence of lubricants metal-additives on pre-ignition. 8 groups of lubricants are injected into a hot co-flow atmosphere which generated by a burner. A single-hole nozzle injector with a diameter of 0.2 mm at 20 MPa injection pressure is utilized for lubricants' injection and spray atomization. The ignition delays of lubricants with different additives of calcium, ZDDP (Zinc Dialkyl Dithiophosphates) and magnesium content under the hot co-flow atmosphere are recorded with a high-speed camera.
Technical Paper

Particulate Emission Characteristics and GPF Performance of WLTC Cycle based on Exhaust Gas Simulator

2023-09-29
2023-32-0097
GDI engine has gained much popularity in vehicle market with its high thermal efficiency. However, because of higher particulate emissions, it becomes harder for GDI engines to fulfill the iteration of emission regulations in various countries. As a result, Gasoline Particulate Filter (GPF) has received more and more attention and applications. It is important to study the particulate emission and GPF performance especially for transient cycles. With a self-designed test bench with burner named Exhaust Gas Simulator, a transient control strategy to simulate the exhaust state of the WLTC cycle has been developed and achieved a fast and stable ash accumulation rate. Three levels of ash loading, in terms of 0g/L, 5g/L and 35g/L, were accumulated on respective GPF for different aging degrees with this test bench. The effect of ash loading on GPF performance was investigated.
X