Refine Your Search

Topic

Affiliation

Search Results

Training / Education

Intelligent Vehicles From Functional Framework to Vehicle Architecture

This course provides an overview of state-of-the-art intelligent vehicles, presents a systematic framework for intelligent technologies and vehicle-level architecture, and introduces testing methodologies to evaluate individual and integrated intelligent functions. Considering the increasing demand for vehicle intelligence, it is critical to gain an understanding of the growing variety of intelligent vehicle technologies and how they must function together effectively as a system.
Training / Education

EV Motor Design Analysis and Test Verification

This course, designed for EV motor engineers and graduate participants, systematically introduces EV motor design analysis and test verification. Combined with engineering practice, it discusses typical EV motor design cases and practical issues related to EV motor technology, aiming to broaden the horizon of EV motor design engineers and improve their problem-solving skills.
Training / Education

Introduction to Car Hacking with CANbus

Vehicle cybersecurity vulnerabilities could impact a vehicle's safe operation. Therefore, engineers should ensure that systems are designed free of unreasonable risks to motor vehicle safety, including those that may result due to existence of potential cybersecurity vulnerabilities. The automotive industry is making vehicle cybersecurity an organizational priority.
Training / Education

Controller Area Network (CAN) for Vehicle Applications

The Controller Area Network has become the standard of choice for most automotive manufacturers.  Approved for use as an ISO and EPA diagnostic network, its usage continues to grow.  This course covers the theory and use of the CAN protocol, and its applications in the automotive industry.  Details on how the CAN protocol and other standards (J2411, J2284, J1939, ISO 11898, etc.) complement each other will be presented. Participants will learn about CAN application layers; the latest J1939, J2284, J2411, and IDB standards, regulations, and implementation requirements; and details of device hardware and software interfaces.
Training / Education

Vehicle Architecture for Hybrid, Electric, Automated, and Shared Vehicle Design

Electric and hybrid vehicle engineers and designers are faced with the important issue of how to adequately configure required powertrain system components to achieve needed performance, occupant accommodation, and operational objectives. This course enables participants to fully comprehend vehicle architectural/configurational design requirements to enable efficient structural design, effective packaging of required components, and efficient vehicle performance for shared and autonomous operation. The importance of integrating these design requirements with specific vehicle user needs and expectations will be emphasized.
Training / Education

Fundamentals of High Voltage xEV, Safety, and PPE

Do you know what personal protective equipment (PPE), tools, and instruments are needed to keep you safe around high voltage (HV) vehicles? Are you aware of how to protect yourself or your employees when working around high voltage systems and platforms? Safety is paramount when working around any type of high voltage. As electric vehicles (EV) and EV fleets become more prevalent, the critical need for OEMs, suppliers, companies, and organizations to provide comprehensive safety training for teams working with or around xEV systems and platforms increases.
Training / Education

Autonomous Vehicle System and Control Architecture

This 4-week virtual-only experience is conducted by leading experts in the autonomous vehicle industry and academia. You’ll develop an understanding of the fundamentals of AV architecture, including mechatronics, kinematics, and the sense-think-act framework in autonomous systems. The course builds a connection for how robotics are used in autonomous vehicles and provides you with demonstrations, procedures, and the skills necessary to program a robot with basic commands using the Robot Operating System (ROS).
Standard

COMMUNICATIONS MANAGEMENT UNIT (CMU) MARK 2

2019-11-26
ARINC758-4
This ARINC Standard specifies the ARINC 758 Mark 2 Communications Management Unit (CMU) as an on-board message router capable of managing various datalink networks and services available to the aircraft. Supplement 4 adds Ethernet interfaces, per ARINC Specification 664 Part 2. This will allow the CMU to communicate with IP based radio transceivers (e.g., L-Band Satellite Communication Systems (Inmarsat SwiftBroadband (SBB) and Iridium Certus), ACARS over IP, AeroMACS, etc.).
Standard

AIRCRAFT DATA NETWORK, PART 1, SYSTEMS CONCEPTS AND OVERVIEW

2019-06-20
ARINC664P1-2
The purpose of this document is to provide an overview of data networking standards recommended for use in commercial aircraft installations. These standards provide a means to adapt commercially defined networking standards to an aircraft environment. It refers to devices such as bridges, switches, routers and hubs and their use in an aircraft environment. This equipment, when installed in a network topology, can optimize data transfer and overall avionics performance.
Standard

GUIDANCE FOR DISTRIBUTED RADIO ARCHITECTURES

2021-07-15
ARINC678
The purpose of this document is to evaluate Communication, Navigation, and Surveillance (CNS) Distributed Radio architectures and the feasibility of distributing the RF and systems processing sections to ensure the following: Reduce cost of equipment Reduce Size, Weight, and Power (SWaP) Ease of aircraft integration Growth capability built into the design Maintain or improve system availability, reliability, and maintainability It provides a framework to determine whether it is feasible to develop ARINC Standards that support CNS distributed radio architectures.
Standard

AIRCRAFT AUTONOMOUS DISTRESS TRACKING (ADT)

2019-08-26
ARINC680
This document describes the technical requirements, architectural options, and recommended interface standards to support an Autonomous Distress Tracking (ADT) System intended to meet global regulatory requirements for locating aircraft in distress situations and after an accident. This document is prepared in response to International Civil Aviation Organization (ICAO) and individual Civil Aviation Authorities (CAAs) initiatives.
Standard

INTERSYSTEM NETWORK INTEGRATION

2021-06-24
ARINC688
The purpose of this document is to provide guidelines for integrating previously standalone cabin systems such as cabin management systems, In-Flight Entertainment (IFE) systems, In-Flight Connectivity (IFC) systems, galley systems, surveillance systems, etc. Resource sharing between systems can reduce airline costs and/or increase functionality. But, as systems expose their internal resources to external systems, the risk of an intrusion that could degrade function and/or negatively expose the supplier’s or airline’s brand increases. This document provides a recommended IP networking design framework between aircraft systems to reduce the operational security threats while still supporting the necessary intersystem routing.
Standard

ONBOARD SECURE WI-FI NETWORK PROFILE STANDARD

2021-06-18
ARINC687
This document defines a standard implementation for strong client authentication and encryption of Wi-Fi-based client connections to onboard Wireless LAN (WLAN) networks. WLAN networks may consist of multi-purpose inflight entertainment system networks operating in the Passenger Information and Entertainment System (PIES) domain, dedicated aircraft cabin wireless networks or localized Aircraft Integrated Data (AID) devices operating in the Aircraft Information Services (AIS) domain. The purpose of this document is to focus on the client devices requiring connections to these networks such as electronic flight bags, flight attendant mobile devices, onboard Internet of Things (IoT) devices, AID devices (acting as clients) and mobile maintenance devices. Passenger devices are not within the focus of this document.
X