Refine Your Search




Search Results

Training / Education

Automated Systems for Aerospace and Space Applications

The rapidly evolving demand for cost reductions and shrinking budgets makes the application and use of automated processes within the aerospace and space industries a necessity. While some view aerospace automation as the solution to reducing costs, others view automation technologies and processes as something that should be avoided when possible. Misunderstandings and assumptions about these complex systems can result in the improper selection and application of these systems, often leading to undesirable interactions with other elements of the assembly process and potentially, project failure.
Training / Education

Design for Additive Manufacturing Towards End-Part Production

Additive manufacturing (AM), with origins in the 1980s, has only more recently emerged as a manufacturing process of choice for functional part production, adding to the suite of choices a designer has available when designing a part for manufacturing. Like other traditional processes like casting and machining, AM has its set of constraints. An added layer of complexity comes from the fact that there are several different AM processes, and some of the design constraints are process-specific.

Energy Transfer System for Electric Vehicles - Part 2: Communication Requirements and Network Architecture

SAE J2293 establishes requirements for Electric Vehicles (EV) and the off-board Electric Vehicle Supply Equipment (EVSE) used to transfer electrical energy to an EV from an Electric Utility Power System (Utility) in North America. This document defines, either directly or by reference, all characteristics of the total EV Energy Transfer System (EV-ETS) necessary to insure the functional interoperability of an EV and EVSE of the same physical system architecture. The ETS, regardless of architecture, is responsible for the conversion of AC electrical energy into DC electrical energy that can be used to charge the Storage Battery of an EV, as shown in Figure 1. The different physical ETS system architectures are identified by the form of the energy that is transferred between the EV and the EVSE, as shown in Figure 2. It is possible for an EV and EVSE to support more than one architecture.

SAE Eye on Engineering: Ford's new steel-bodied Ranger

Today, ford motor company begins U.S. production of its 2019 Ranger, the company's first midsize pickup. In this episode of SAE Eye on Engineering, Editor-in-Chief Lindsay Brooke looks at the new steel-bodied Ranger. SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show.
White Paper


The exponential increase in the number of aircraft and air travelers has triggered new innovations aimed to make airline services more reliable and consumer friendly. Quick and efficient maintenance actions with minimum downtime are the need of the hour. Another major challenge is ensuring maintenance personnel are trained effectively; technology like augmented reality and Virtual Maintenance Trainers (VMTs) may provide safe and efficient training in lieu of live, instructor-led arrangements. And while traditional User/Maintenance Manuals provide useful information when dealing with simple machines, when dealing with complex systems of systems and miniaturized technologies, like unmanned aerial vehicles (UAVs), new technologies like augmented reality can rapidly and effectively support the maintenance operations.

Dynamic Cleat Test with Perpendicular and Inclined Cleats

This SAE Recommended Practice describes a test method for measuring the forces and moments generated at a high frequency response spindle when a rolling tire impacts a cleat. The cleat is configured either with its crest perpendicular, 90°, to the path of the tire or optionally with its crest inclined at an angle to the path of the tire. The carriage to which the spindle is attached is rigidly constrained in position during each test condition so as to provide a good approximation to fixed loaded radius operation. The method discussed in this document provides impact force and moment time histories essentially free from variations due to tire non-uniformities. The method applies to any size tire so long as the equipment is properly scaled to conduct the measurements for the intended test tire. The data are suitable for use in determining parameters for road load models and for comparative evaluations of the measured properties in research and development.

Ethics for Accident Investigation and Reconstruction

The purpose of this SAE Recommended Practice is to promote the highest professional and personal conduct of practitioners in the fields of accident investigation and reconstruction. It encourages the continuous application of high ethical principles to one’s own endeavors. It also encourages the application of these same principles to others associated with accident investigation and reconstruction.

Reliability Program Standard

This SAE standard establishes the requirement for suppliers to plan a reliability program that satisfies the following three requirements: a The supplier shall ascertain customer requirements b The supplier shall meet customer requirements c The supplier shall assure that customer requirements have been met

Scrap Tires

Scrap Tires: Disposal and Reuse details the historical, technological, and economic issues related to the scrap tire industry, and the manner in which the scrap tire problem is addressed. The ultimate solution will be hastened by progress in the establishment of profitable commercial enterprises and markets to utilize scrap tires for their inherent intrinsic value. Scrap Tires provides advice on how scrap tires can be used for fuels, sealants, rubber mats, playground surfaces, equestrian arenas, wastewater treatment plant composts, golf courses, and more. Written from a business perspective, Scrap Tires focuses on the economics of tire recycling, providing valuable advice to individuals or companies. In addition to an exploration of markets, the book describes how tires are chopped, the machinery used in chopping tires, the grinding process, and the engineering properties of tire chips.


This report is an abbreviated summary of metallurgical joining by welding, brazing, and soldering. It is generally intended to reflect current usage in the automotive industry; however, it does include some of the more recently developed processes. More comprehensive coverage of materials, processing details, and equipment required may be found in the Welding Handbook, Soldering Manual, and other publications of the American Welding Society and the American Society for Testing and Materials. AWS Automotive Welding Committee publications on Recommended Practices are particularly recommended for the design or product engineer. This report is not intended to cover mechanical joining such as rivets or screw fasteners, or chemical joining processes such as adhesive joining.