Refine Your Search

Search Results

Viewing 1 to 9 of 9
Standard

Linear Token Passing Multiplex Data Bus User's Handbook

1992-12-30
HISTORICAL
AIR4288
This document is intended to explain, in detail, the rationale behind the features and functions of the AS4074, Linear, Token-passing, Bus (LTPB). The discussions also address the considerations which a system designer should take into account when designing a system using this bus. Other information can be found in these related documents:
Standard

Linear Token Passing Multiplex Data Bus User's Handbook

2012-05-03
CURRENT
AIR4288A
This document is intended to explain, in detail, the rationale behind the features and functions of the AS4074, Linear, Token-passing, Bus (LTPB). The discussions also address the considerations which a system designer should take into account when designing a system using this bus. Other information can be found in these related documents: AIR4271 - Handbook of System Data Communication AS4290 - Validation Test Plan for AS4074
Standard

Handbook of System Data Communications

2016-10-21
CURRENT
AIR4271A
This Aerospace Information Report (AIR) has been prepared by the Systems Applications and Requirements Subcommittee of SAE Committee AS-2. It is intended to provide guidance primarily, but not exclusively, for specifiers and designers of data communication systems for real time military avionics applications within a platform. The subject of high speed data transmission is addressed from two standpoints: (1) the influence of developments in technology on avionics architectures as a whole and (2) the way in which specific problems, such as video, voice, closed loop control, and security may be handled. While the material has been prepared against a background of experience within SAE AS-2 relating to the development of a family of high speed interconnect standards, reference to specific standards and interconnect systems is minimized.
Standard

Handbook of System Data Communications

1989-11-01
HISTORICAL
AIR4271
This Aerospace Information Report (AIR) has been prepared by the Systems Applications and Requirements Subcommittee of SAE Committee AS-2. It is intended to provide guidance primarily, but not exclusively, for specifiers and designers of data communication systems for real time military avionics applications within a platform. The subject of high speed data transmission is addressed from two standpoints: (1) the influence of developments in technology on avionics architectures as a whole and (2) the way in which specific problems, such as video, voice, closed loop control, and security may be handled. While the material has been prepared against a background of experience within SAE AS-2 relating to the development of a family of high speed interconnect standards, reference to specific standards and interconnect systems is minimized.
Standard

Serial Hi-Rel Ring Network for Aerospace Applications (RingNet)

2010-03-09
CURRENT
AS1393
This standard establishes the design requirements for a fiber optic serial interconnect protocol, topology, and media. The application target for this standard is the interconnection of multiple aerospace sensors, processing resources, bulk storage resources and communications resources onboard aerospace platforms. The standard is for subsystem interconnection, as opposed to intra-backplane connection.
Standard

Linear Token Passing Multiplex Data Bus

2017-02-21
CURRENT
AS4074B
This standard specifies the characteristics of the SAE Linear Token Passing Bus (LTPB) Interface Unit. The LTPB provides a high reliability, high bandwidth, low latency serial interconnection network suitable for utilization in real time military and commercial applications. Multiple redundant data paths can be implemented to enhance reliability and survivability in those applications which require these attributes. The token passing and data exchange protocols are optimized to provide low latency and fast failure detection and correction. Physical configurations with bus lengths up to 1000 m can be accommodated.
Standard

Type E-1 Electrical Media Interface Characteristics

2004-10-14
HISTORICAL
AS4074/3A
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the electrical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
Standard

Linear Token Passing Multiplex Data Bus

2004-10-14
HISTORICAL
AS4074A
This standard specifies the characteristics of the SAE Linear Token Passing Bus (LTPB) Interface Unit. The LTPB provides a high reliability, high bandwidth, low latency serial interconnection network suitable for utilization in real time military and commercial applications. Multiple redundant data paths can be implemented to enhance reliability and survivability in those applications which require these attributes. The token passing and data exchange protocols are optimized to provide low latency and fast failure detection and correction. Physical configurations with bus lengths up to 1000 m can be accommodated.
Standard

Linear Token Passing Multiplex Data Bus

1993-12-01
HISTORICAL
AS4074
This standard specifies the characteristics of the SAE Linear Token Passing Bus (LTPB) Interface Unit. The LTPB provides a high reliability, high bandwidth, low latency serial interconnection network suitable for utilization in real time military and commercial applications. Multiple redundant data paths can be implemented to enhance reliability and survivability in those applications which require these attributes. The token passing and data exchange protocols are optimized to provide low latency and fast failure detection and correction. Physical configurations with bus lengths up to 1000 m can be accommodated.
X