Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Commercial and Off-Road Vehicle Cooling Airflow Systems

Vehicle functional requirements, emission regulations, and thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Given the expected increase in emission-related heat rejection, suppliers and vehicle manufacturers must work together as partners in the design, selection, and packaging of cooling system components. An understanding and appreciation of airflow integration issues and vehicle-level trade-offs that effect system performance are important to the team effort. The severe duty cycles, minimal ram air, and sometimes unconventional package layouts present unique challenges.
Video

Neural Network-based Optimal Control for Advanced Vehicular Thermal Management Systems

2011-12-05
Advanced vehicular thermal management system can improve engine performance, minimize fuel consumption, and reduce emissions by harmoniously operating computer-controlled servomotor components. In this paper, a neural network-based optimal control strategy is proposed to regulate the engine temperature through the advanced cooling system. Presenter Asma Al Tamimi, Hashemite University
Video

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-11-29
Today CFD is an important tool for engineers in the automotive industry who model and simulate fluid flow. For the complex field of Underhood Thermal Management, CFD has become a very important tool to engineer the cooling airflow process in the engine bay of vehicles. Presenter Peter Gullberg, Chalmers University of Technology
Video

The New Audi A6/A7 Family - Aerodynamic Development of Different Body Types on One Platform

2011-11-17
The presentation describes the aerodynamic development and optimization process of the three different new models of the Audi A6/A7 family. The body types of these three models represent the three classic aerodynamic body types squareback, notchback and fastback. A short introduction of the flow structures of these different body types is given and their effect on the vehicle aerodynamic is described. In order to achieve good aerodynamic performance, the integration into the development process of the knowledge about these flow phenomena and the breakdown of the aerodynamic resistance into its components friction- and pressure drag as well as the induced drag is very important. The presentation illustrates how this is realized within the aerodynamic development process at Audi. It describes how the results of CFD simulations are combined with wind tunnel measurements and how the information about the different flow phenomena were used to achieve an aerodynamic improvement.
Video

Ice Phobic Coatings for Control and Covered Surfaces

2012-03-14
Silicones have been utilized in multiple industries in the last 50 years and their applications are still expanding as technology grows. Ice phobic coatings, as an example, have been utilized on lock walls, navigation channels, wind turbines, hydropower intakes, and aircraft. Without protection these applications have a high risk of failure in the functions they perform. For example, ice build up on an aircraft?s aerodynamic surfaces increases drag which reduces lift during flight operations. Utilizing a silicone ice phobic coating significantly reduces the adhesion of ice to aerodynamic surfaces. Compared to other polymeric materials, silicones are known for their broad operating temperature range and lend themselves to excellent performance in a variety of harsh environments. Especially in low temperatures where ice adhesion is a concern, silicones retain their elastomeric physical properties and low modulus.
Video

Development of Scratch Resistant Clear Coat for Automotive

2012-05-23
Scratch resistance is one of the most important customer requirements for automotive painting. Scratches occur as a result of a load being imposed on a paint film, which then destroys or deforms it. In order to improve the scratch resistance properties of clear coat, a specially developed molecular that act to accelerate closslinking reaction was added to the clear coat main resin. This developed molecular facilitates closslinking between multiple molecules and creates an unprecedentedly fine molecular structure. The result is a soft, highly elastic, and durable clear coat with improved resistance to light and acid as well as enhanced deformation recovery properties. It requires no special maintenance, prevents luster degradation caused by surface scratches and helps to prolong new-car color and gloss. Developmental Clear Coat is introduced into the flagship of the Lexus range - the LS as Self-restoring Coat in 2009. Presenter Junya Ogawa, Developmental Center
Video

Eco+ Solutions in High Performance Plastics from DSM for Automotive.

2012-05-22
DSM will present various application solutions in High Performance Plastics enabling to significant weight or friction reduction and thus to reduced fuel consumption and/or emission levels, and on top of that to lower system costs. Typical Eco+ Solutions Examples to be presented are: - Friction Reduction: Nylon 46 in chain tensioners yielding up to 1 % fuel reduction - Weight Reduction (metal-to-plastic conversion): Nylon 46 with long term temperature resistance upto 230 C in turbo components, Nylon 6 in oil pans/sumps, PET in plastic precision parts, Nylon 46 in gears, many other examples - Electrification: Nylon 46 in start/stop and e-motor components, TPC in HV cables - System Cost optimization: High Flow PA6 in various components, TPC in Brake Tubes - Improved LCA: biobased materials as PA410 and TPC-Eco Typical Application Solutions concern: air induction systems, engine and transmission components, electrical systems, structural&safety parts.
Video

5000 Hours Aging of THERBAN® (HNBR) Elastomers in an Aggressive Biodiesel Blend

2012-05-23
TERBAN® hydrogenated nitrile rubber (HNBR) is a specialty elastomer used in demanding engineering applications such as the automotive, heavy duty, and industrial markets. It has excellent combination of heat, oil and abrasion resistance in addition to its high mechanical strength, very good dynamic and sealing properties. This paper will present data on aging HNBR for five thousand hours in an aggressive and un-stabilized B30A biodiesel fuel blend (70% ULSD, 30% SME, and an aggressive additive package) and explore the effect of HNBR polymer properties and vulcanizate composition on the performance in such fuel blends. Presenter Victor Nasreddine
Video

High Speed Machining of CFRP Parts

2012-03-16
High Speed Machining of CFRP Parts Investigation of the influence of new geometries, cutting datas and coolant capabilities on the surface finish of CFRP parts. State of the art: Different CFRP grades and machining conditions make geometry adjustments to the tool necessary. Mechanical failures through machining operations can be avoided in most of the cases. New unidirectional CFRP grades and dry machining processes again lead to machining problems. This study investigates new geometries to avoid heat damage with dry maching and air coolant in case of unidirectional CFRP. With help of a thermo camera and the surface investigation with a scanning electron microscope, heat damage can be analysed and therefore new geometries can be developed and tested. Target is to develop a new multi purpose CFRP geometry to meet the requirements of the future. The reduction of different geometries used leads to major cost savings. Presenter Ingo von Puttkamer, Guhring oHG
Training / Education

Introduction to Cooling Airflow Systems Web Seminar RePlay

Anytime
Vehicle functional requirements, diesel emission regulations, and subsystem thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Severe duty cycles, minimal ram air, fouling, and sometimes unconventional package layouts present unique challenges to the designer. This course introduces many airflow integration issues and vehicle-level trade-offs that effect system performance and drive the design. The goal of this course is to introduce engineers and managers to the basic principles of diesel cooling airflow systems for commercial and off-road vehicles.
Technical Paper

Installation Effects on the Flow Generated Noise From Automotive Electrical Cooling Fans

2020-09-30
2020-01-1516
With the electrification of road vehicles comes new demands on the cooling system. Not the least when it comes to noise. Less masking from the driveline and new features, as for example, cooling when charging the batteries drives the need for silent cooling fans. In this work a novel e-fan is studied in different generalized installations and operating conditions. The fans (a cluster configuration) are installed in a test rig where the operation could be controlled varying the speed, flow rate and pressure difference over the fan. On the vehicle side of the fan a generalized packaging space (similar to an engine bay for conventional vehicles) is placed. In this packaging space different obstruction can be placed to simulate the components and radiators used in the vehicle. Here generalized simple blocks in different configuration are used to provide well defined and distinct test cases.
Technical Paper

Numerical Investigation of Narrow-Band Noise Generation by Automotive Cooling Fans

2020-09-30
2020-01-1513
Axial cooling fans are commonly used in electric vehicles to cool batteries with high heating load. One drawback of the cooling fans is the high aeroacoustic noise level resulting from the fan blades and the obstacles facing the airflow. To create a comfortable cabin environment in the vehicle, and to reduce exterior noise emission, a low-noise installation design of the axial fan is required. The purpose of the project is to develop an efficient computational aeroacoustics (CAA) simulation process to assist the cooling-fan installation design. This paper reports the current progress of the development, where the narrow-band components of the fan noise is focused on. Two methods are used to compute the noise source. In the first method the source is computed from the flow field obtained using the unsteady Reynolds-averaged Navier-Stokes equations (unsteady RANS, or URANS) model.
Technical Paper

Reinforcement of Low-Frequency Sound by Using a Panel Speaker Attached to the Roof Panel of a Passenger Car

2020-09-30
2020-01-1570
The woofer in a car should be large to cover the low frequencies, so it is heavy and needs an ample space to be installed in a passenger car. The geometry of the woofer should conform to the limited available space and layout in general. In many cases, the passengers feel that the low-frequency contents are not satisfactory although the speaker specification covers the low frequencies. In this work, a thin panel is installed between the roof liner and the roof panel, and it is used as the woofer. The vibration field is controlled by many small actuators to create the speaker and baffle zones to avoid the sound distortion due to the modal interaction. The generation of speaker and baffle zones follows the inverse vibro-acoustic rendering technique. In the actual implementation, a thin acrylic plate of 0.53ⅹ0.2 m2 is used as the radiator panel, and the control actuator array is composed of 16 moving-coil actuators.
Book

Principles of Engine Cooling Systems, Components and Maintenance

1990-10-01
Completely revised as a result of the significant progress made in cooling system design and maintenance practices and procedures, HS-40 provides current, comprehensive information on the description, function, and maintenance of engine liquid-cooling systems used in light and heavy-duty vehicles. Information-packed chapters discuss the interrelation between the cooling system and other engine systems, cooling system components, general preventive maintenance, and troubleshooting.
Technical Paper

Automobile Induction-Systems and Air-Cleaners

1928-01-01
280051
AFTER indicating the trend of requirements in induction systems, the author discusses air-cleaners, carbureters and inlet manifolds. Particular attention is paid to improvements in centrifugal air-cleaners, that result in only slight pressure loss and in high cleaning efficiency. These improvements have been made by changing the body outline; by the addition of a diffuser, to make the resistance as small as possible; and by proportioning the vanes, as to angle and number, to increase the cleaning efficiency with only slight loss in pressure. Carbureters are considered briefly, only because of their interrelation with air-cleaners and manifolds. Inlet manifolding for four, six, and eight-cylinder-inline engines is studied, with variations in port arrangement. Recommendations are made as to the cross-sectional areas and form to secure best distribution of the mixture and adequate vaporization.
Technical Paper

A New Electrical Engine-Indicator

1928-01-01
280050
AFTER enumerating the fundamental qualities that make an engine indicator successful, the authors classify existing indicators and discuss a few of the more successful ones. Then is introduced the new electrical indicator, which makes its record from variation between the resistances of two carbon-piles which form the branches of a Wheatstone bridge. The pressure element is a thin diaphragm flush with the inner walls of the combustion-chamber. This is connected by an invar rod to a cantilever spring, the displacement of which reduces the resistance in one carbon-pile and increases the resistance in the other. The diagram is recorded by either an ordinary oscillograph or a portable cathode-ray oscillograph. Diagrams taken with this indicator are presented to illustrate its performance under varied conditions. A natural frequency of more than 3000 cycles per second makes possible the faithful recording of phenomena having frequencies as high as 800 cycles per second.
Technical Paper

Service Characteristics of Light Alloys

1929-01-01
290064
ALUMINUM and magnesium, being the lightest commercial metals and therefore the most suitable for aircraft construction, are discussed in their pure and alloyed states. Physical properties of the pure metals and their alloys are given and the effects of adding small quantities of alloying elements are shown. Heat-treating as a means of increasing the strength per unit weight of the alloys is discussed at length, together with the effects of natural aging and artificial aging at elevated temperatures and of quenching in hot and in cold water after heat-treating. The several types of corrosion are considered and resistance to corrosion of the metals and their various alloys are discussed. Protection afforded to aluminum alloy by a surface coating of pure aluminum is described, and other methods are mentioned.
Technical Paper

Front-Wheel Drives

1930-01-01
300001
ENGINEERING considerations leading to the former almost universal practice of steering with the front wheels and driving and braking with the rear wheels are reviewed, and the desire for bodies lower than can be made with conventional design is given as the main reason for the present interest in front drives. For early history, European development, racing practice and the closely related subject of four-wheel drives, the reader is referred to a previous paper by Herbert Chase.2 One major advantage to be secured with front-drive design is lower unsprung weight, which should promote easy riding and road-holding ability and reduce tire wear. An inherent disadvantage is that driving-torque reaction and hill climbing shift some weight from the front axle to the rear axle, thus slightly reducing the tractive effort possible; but this shift is not considered important, since the control of weight distribution is in the hands of the designer.
Technical Paper

Bearing Bronzes with Additions of Zinc, Phosphorus, Nickel and Antimony

1930-01-01
300012
SEVEN basic copper-tin-lead bearing-bronzes having high copper contents were studied by the application of various mechanical tests, such as Brinell hardness, resistance to impact, resistance to repeated pounding and resistance to wear. The effects of various additions were investigated by preparing test bearings of the same base alloys with additions of zinc, phosphorus, nickel and antimony, taken singly, and applying the same tests to these. The preparation of the test castings and the methods of testing are described in detail. The chemical analyses are given for the 40 different alloys tested; and the results of the various tests on each group of alloys are reported and discussed in detail, with the observations charted and tabulated for convenient reference. A tabulation of the specifications of 54 different bearing bronzes now in use is included in the paper. Dr. Dowdell presented and discussed∗ the paper for the authors.
X