Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Material Compatibilities of Biodiesels with Elastomers, Metals and Plastics in a Diesel Engine

The effects of biodiesel on the swelling of the elastomers and plastics and the corrosion of metals are studied by the immersion tests. The results indicate that biodiesels make little corrosion effect on aluminum, steel and little swelling impact on plastics, but a significant corrosion may be taken place on cooper and brass for some sourced biodiesels. For nitrile-butadiene rubber, the variation of swelling properties in biodiesels is slightly higher than that in diesel. For the non-diesel-resistant elatomers, the variation of swelling properties is lower than those in diesel. The production process and biodiesel source have an influence on the result of elastomer swelling and corrosion. The relationship between the impact of biodiesel on materials and biodiesels properties are also discussed.
Technical Paper

Compatibility of Biodiesels and Their Blends with Typical Rubbers and Copperish Metals

The swelling of ‘O’ rings of 3 typical rubbers (NBR, FKM, EPDM) and the corrosion of 2 typical copperish metal pieces (Copper, Brass) were investigated. The fuel samples included 14 kinds of biodiesels, 1 kind of diesel, and 4 kinds of blends respectively for 2 kinds of biodiesels. The changes in mass and size of ‘O’ rings were measured with an electronic balance and a vernier caliper. The surface corrosion of copperish metals was recorded with photos. It was found that the swelling of NBR in pure biodiesels were generally larger than those in diesel. The mass and size of FKM almost did not change in both pure biodiesels and diesel. The swelling of EPDM became less in pure biodiesels than that in diesel. When the blend ratios of biodiesels were less than 10%, the change rates in mass, inner diameter and section diameter of NBR, FKM and EPDM were similar between blended fuels and diesel.
Technical Paper

Misfiring Control in Current Cycle at Engine Start Employing Ion Sensing Technology

In this paper a method of misfiring control in current cycle at engine start is presented. With this novel method, the high HC emissions of gasoline engine employed in traditional or hybrid electrical vehicles will be avoided. By the feedback of ion current signal, misfire phenomenon is identified within 30 degrees crank angle after spark plug ignited. Then, the ignition coil will be recharged and the plug sparked again to promote air fuel mixture oxidation and deplete the unburned hydrocarbon produces in exhaust gas. On the other hand, too late ignition will not always result in normal combustion, a kind of reaction similar with slow oxidation also occurs in such case.
Technical Paper

Effect of Nozzle Geometry on Macroscopic Behavior of Diesel Spray in the Near-Nozzle Field

In this study, the orifice inlet rounding radii of four diesel nozzles with different hydro erosive grinding time were measured based on the x-ray CT scan technology provided by Shanghai Synchrotron Radiation Facility (SSRF), and a wide parametrical study of the spray macroscopic behavior in the first 18 mm from the nozzle tip have been carried out with high speed camera. And then the influence of orifice inlet rounding radius on the spray behavior in the near-nozzle field was thoroughly investigated. The investigation results show that: the mean values of orifice inlet rounding radii of different nozzles are measured to be on the order of 21.5-56.8 μm. Although the spray tip penetrations of different nozzles tend to increase with the hydro erosive grinding time through statistical analyzing method, the variations of penetration from nozzles are less than 15% according to different hydro erosive grinding timing.
Technical Paper

Fatigue Design and Analysis of the Vehicle Exhaust System's Hanger

The weight of an exhaust system on a modern vehicle is increasing because of all kinds of reasons, like engine power's increasing, more catalysts for emission control and more NVH (Noise, Vibration and Harshness) performance requirements. After the engine starting, the exhaust system was not only bearing a cyclical load from the engine, which mainly causing the vibration of the exhaust system, but also the loads from the road, which was transferred through the wheels, the suspension system and the body. Because the exhaust system always worked in these bad conditions, its structural strength, durability and life-time were analyzed in the paper, by numerical simulation and physical correlation. By discretizing the exhaust system's CAD model, a finite element model was built. After restrict the finite element model as it in a real load condition, complete the structure stress analysis and Fatigue analysis of exhaust system's hanger with FEA analysis tools.
Technical Paper

Effects of Lubricant Additives on Auto-Ignition under a Hot Co-Flow Atmosphere

Pre-ignition may lead to an extreme knock (super-knock or mega-knock) which will impose a severe negative influence on the engine performance and service life, thus limiting the development of downsizing gasoline direct injection (GDI) engine. More and more studies reveal that the auto-ignition of lubricants is the potential source for pre-ignition. However, pre-ignition is complicated to study on the engine test bench. In this paper, a convenient test method is applied to investigate the influence of lubricants metal-additives on pre-ignition. 8 groups of lubricants are injected into a hot co-flow atmosphere which generated by a burner. A single-hole nozzle injector with a diameter of 0.2 mm at 20 MPa injection pressure is utilized for lubricants' injection and spray atomization. The ignition delays of lubricants with different additives of calcium, ZDDP (Zinc Dialkyl Dithiophosphates) and magnesium content under the hot co-flow atmosphere are recorded with a high-speed camera.
Technical Paper

Development of a Gas-Phase LPG Injection System for a Small SI Engine

This paper presents the development of an electronic control LPG gas injection system and its application in a small SI engine. The tests results show that the developed LPG gas injection system can meet the needs for the goal of high engine power output and low exhaust emissions based on the engine bench tests. With the LPG electronic gas injection system, the air-fuel ratio can be optimized based on the requirements and CO and NOx emission levels are decreased significantly compared with the LPG mechanical mixer fuel supply system, based on the same HC emission levels. With the new gas phase LPG electronic control injection system, the HC emission level is controlled below the 300 ppm under most engine conditions and under 200 ppm when the engine speed is over 3000 r/min. The NOx emission level is under 2600 ppm in the whole range of engine operation conditions and is decreased by 2000 ppm compared with the LPG mechanical mixer system.