Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

Cartridge Cavity

2018-10-30
CURRENT
J2494/4_201810
This SAE Standard covers complete general and dimensional data for the manufacture of, T6061-T6 Aluminum cavities designed to receive Push To Connect threadless fittings known as “cartridges“, for air brake applications. This document is not intended to specify or recommend any style or manufacture of such cartridges but to establish uniform cavity dimensions for interchangeability purposes.
Standard

Cartridge Cavity

2011-10-28
HISTORICAL
J2494/4_201110
This SAE Standard covers complete general and dimensional data for the manufacture of, T6061-T6 Aluminum cavities designed to receive Push To Connect threadless fittings known as “cartridges“, for air brake applications. This document is not intended to specify or recommend any style or manufacture of such cartridges but to establish uniform cavity dimensions for interchangeability purposes.
Standard

Acceleration Factors

2014-09-12
CURRENT
SSB1_003A
This document is an annex to EIA Engineering Bulletin SSB-1, Guidelines for Using Plastic Encapsulated Microcircuits and Semiconductors in Military, Aerospace and Other Rugged Applications (the latest revision). This document provides reference information concerning acceleration factors commonly used by device manufacturers to model failure rates in conjunction with statistical reliability monitoring. These acceleration factors are frequently used by OEMs in conjunction with physics of failure reliability analysis to assess the suitability of plastic encapsulated microcircuits and semiconductors for specific end use applications.
Standard

Refrigerant 12 Automotive Air-Conditioning Hose

2015-04-21
CURRENT
J51_201504
This SAE Standard covers reinforced hose, or hose assemblies, intended for conducting liquid and gaseous dichlorodifluoromethane (refrigerant 12) in automotive air-conditioning systems. The hose shall be designed to minimize permeation of refrigerant 12 and contamination of the system and to be serviceable over a temperature range of −30 to 120 °C (−22 to 248 °F). Specific construction details are to be agreed upon between user and supplier.1 NOTE—R12 refrigerant has been placed on a banned substance list due to its ozone depletion characteristics. SAE J51 specification will be phased out as new automotive A/C systems are using R134a. SAE J2064 is the Standard for refrigerant 134a hose. For refrigerant 134a use, refer to SAE J2064.
Standard

Split Type Bushings – Design and Application

2011-06-13
CURRENT
J835_201106
This SAE Standard presents the standard sizes, important dimensions, specialized measurement techniques, and tolerances for split type bushings. Both SI and inch sizes are shown; their dimensions are not exact equivalents. New designs shall use SI units. Unless specifically stated as ±, all tolerances are total.
Standard

Low-Permeation Fuel Fill and Vent Tube

2007-07-02
CURRENT
J2405_200707
This SAE Standard covers the minimum requirements for a low-permeation tubing (100 g/m2·day or less) for use as a low pressure (14.5 kPa) liquid- or vapor-carrying component for use in gasoline or diesel fuel filler, vent, and vapor systems. The construction shall be designed to be functional over a temperature range of –40 °C to 100 °C for the T1 designation, or –40 °C to 125 °C for the T2 designation.
Standard

Aluminum Alloys - Fundamentals

2018-01-10
CURRENT
J451_201801
This information report is intended to give general data on the properties of aluminum and information on working, joining, forming, machining, finishing, and heat treating of aluminum.
Standard

ALUMINUM ALLOYS - FUNDAMENTALS

1989-01-01
HISTORICAL
J451_198901
This information report is intended to give general data on the properties of aluminum and information on working, joining, forming, machining, finishing, and heat treating of aluminum.
Standard

SELECTION AND HEAT TREATMENT OF TOOL AND DIE STEELS

1970-04-01
HISTORICAL
J437_197004
The information in this report covers data relating to SAE J438, Tool and Die Steels, and is intended as a guide to the selection of the steel best suited for the intended purpose and to provide recommended heat treatments and other data pertinent to their use. Specific requirements as to physical properties are not included because the majority of tool and die steels are either worked or given special heat treatments by the purchaser. The purchaser may or may not elect to use the accompanying data for specification purposes.
Standard

Selection and Heat Treatment of Tool and Die Steels

2018-01-09
CURRENT
J437_201801
The information in this report covers data relating to SAE J438, Tool and Die Steels, and is intended as a guide to the selection of the steel best suited for the intended purpose and to provide recommended heat treatments and other data pertinent to their use. Specific requirements as to physical properties are not included because the majority of tool and die steels are either worked or given special heat treatments by the purchaser. The purchaser may or may not elect to use the accompanying data for specification purposes.
Standard

Magnesium Wrought Alloys

2018-01-09
CURRENT
J466_201801
This SAE Standard covers the most common magnesium alloys used in wrought forms, and lists chemical composition and minimum mechanical properties for the various forms. A general indication of the usage of the various materials is also provided.
Standard

MAGNESIUM WROUGHT ALLOYS

1989-12-01
HISTORICAL
J466_198912
This SAE Standard covers the most common magnesium alloys used in wrought forms, and lists chemical composition and minimum mechanical properties for the various forms. A general indication of the usage of the various materials is also provided.
Standard

MAGNESIUM CASTING ALLOYS

1989-01-01
HISTORICAL
J465_198901
This document has not changed other than to put it into the new SAE Technical Standards Board Format This SAE Standard covers the most commonly used magnesium alloys suitable for casting by the various commercial processes. The chemical composition limits and minimum mechanical properties are shown. Over the years, magnesium alloys have been identified by many numbering systems, as shown in Table 1. Presently, SAE is recommending the use of the use of the UNS numbering system to identify those materials. Other equally important characteristics such as surface finish and dimensional tolerances are not covered in this standard.
Standard

Magnesium Alloys

2017-12-20
CURRENT
J464_201712
This report on magnesium alloys covers those alloys which have been more commonly used in the United States for automotive, aircraft, and missile applications. Basic information on nomenclature and temper designation is given. Design data and many characteristics covered by a purchase specification are not included.
Standard

Magnesium Casting Alloys

2018-01-09
CURRENT
J465_201801
This document has not changed other than to put it into the new SAE Technical Standards Board Format This SAE Standard covers the most commonly used magnesium alloys suitable for casting by the various commercial processes. The chemical composition limits and minimum mechanical properties are shown. Over the years, magnesium alloys have been identified by many numbering systems, as shown in Table 1. Presently, SAE is recommending the use of the use of the UNS numbering system to identify those materials. Other equally important characteristics such as surface finish and dimensional tolerances are not covered in this standard.
Standard

MAGNESIUM ALLOYS

1989-01-01
HISTORICAL
J464_198901
This report on magnesium alloys covers those alloys which have been more commonly used in the United States for automotive, aircraft, and missile applications. Basic information on nomenclature and temper designation is given. Design data and many characteristics covered by a purchase specification are not included.
Standard

ELECTROPLATING AND RELATED FINISHES

1985-02-01
CURRENT
J474_198502
Electroplating is a process whereby an object is coated with one or more relatively thin, tightly adherent layers of one or more metals. It is accomplished by placing the object to be coated on a plating rack or a fixture, or in a basket or in a rotating container in such a manner that a suitable current may flow through it, and then immersing it in a series of solutions and rinses in planned sequence. The advantage to be gained by electroplating may be considerable; broadly speaking, the process is used when it is desired to endow the basis material (selected for cost, material conservation, and physical property reasons) with surface properties it does not possess. It should be noted that although electroplating is the most widely used process for applying metals to a substrate, they may also be applied by spraying, vacuum deposition, cladding, hot dipping, chemical reduction, mechanical plating, etc.
Standard

WROUGHT NICKEL AND NICKEL-RELATED ALLOYS

1976-07-01
HISTORICAL
J470_197607
This Report presents general information on over 50 alloys in which nickel either predominates or is a significant alloying element. It covers primarily wrought materials, and is not necessarily all inclusive. Values given are in most cases average or nominal, and if more precise values are required the producer(s) should be contacted. This report does not cover the so-called "superalloys," or the iron base stainless steels. Refer to SAE J467, Special Purpose Alloys, and SAE J405, Chemical Compositions of SAE Wrought Stainless Steels, respectively, for data on these alloys.
Standard

Wrought Nickel and Nickel-Related Alloys

2018-02-15
CURRENT
J470_201802
This Report presents general information on over 50 alloys in which nickel either predominates or is a significant alloying element. It covers primarily wrought materials, and is not necessarily all inclusive. Values given are in most cases average or nominal, and if more precise values are required the producer(s) should be contacted. This report does not cover the so-called "superalloys," or the iron base stainless steels. Refer to SAE J467, Special Purpose Alloys, and SAE J405, Chemical Compositions of SAE Wrought Stainless Steels, respectively, for data on these alloys.
X