Refine Your Search




Search Results

Training / Education

Introduction to Commercial and Off-Road Vehicle Cooling Airflow Systems

Vehicle functional requirements, emission regulations, and thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Given the expected increase in emission-related heat rejection, suppliers and vehicle manufacturers must work together as partners in the design, selection, and packaging of cooling system components. An understanding and appreciation of airflow integration issues and vehicle-level trade-offs that effect system performance are important to the team effort. The severe duty cycles, minimal ram air, and sometimes unconventional package layouts present unique challenges.
Training / Education

Corrosion Engineering and Prevention

The transportation industry, including motor vehicles, aircraft, rail, marine, commercial, off-road and defense vehicles, as well as infrastructures, energy sectors, raw materials, manufacturing, health and food industries all experience significant issues with corrosion which results in billions of dollars of loss each year. Corrosion education and prevention is essential to improve and increase the service life of parts and components which may have a significant impact on the economy of various industries and nations.
Training / Education

Fuel Systems Material Selection and Compatibility with Alternative Fuels

This course will introduce the participants to the factors governing fuel-material compatibility and methods to predict and empirically determine compatibility for new alternative fuel chemistries. By understanding the mechanisms and factors associated with chemically-induced degradation, participants will be able to assess the impact of fuel chemistry to infrastructure components, including those associated with vehicle fuel systems. This course is unique in that it looks at compatibility from a fuel chemistry perspective, especially new fuel types such as alcohols and other biofuels.

Fuel and Additive Effects on Engine Systems, 2017

Topics include the effects of fuel and additives on deposit formation, intake system cleanliness, friction, wear, corrosion, and elastomer compatibility. Also covered are effects of fuel specification on drivability, on evaporative emissions, and on the relationship between emissions and drive cycle.

Neural Network-based Optimal Control for Advanced Vehicular Thermal Management Systems

Advanced vehicular thermal management system can improve engine performance, minimize fuel consumption, and reduce emissions by harmoniously operating computer-controlled servomotor components. In this paper, a neural network-based optimal control strategy is proposed to regulate the engine temperature through the advanced cooling system. Presenter Asma Al Tamimi, Hashemite University

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

Today CFD is an important tool for engineers in the automotive industry who model and simulate fluid flow. For the complex field of Underhood Thermal Management, CFD has become a very important tool to engineer the cooling airflow process in the engine bay of vehicles. Presenter Peter Gullberg, Chalmers University of Technology

Monitoring NO2 Production of a Diesel Oxidation Catalyst

A combination of laboratory reactor measurements and vehicle FTP testing has been combined to demonstrate a method for diagnosing the formation of NO2 from a diesel oxidation catalyst (DOC). Using small cores from a production DOC and simulated diesel exhaust, the laboratory reactor experiments are used to support a model for DOC chemical reaction kinetics. The model we propose shows that the ability to produce NO2 is chemically linked to the ability of the catalyst to oxidize hydrocarbon (HC). For thermally damaged DOCs, loss of the HC oxidation function is simultaneous with loss of the NO2 production function. Since HC oxidation is the source of heat generated in the DOC under regeneration conditions, we conclude that a diagnostic of the DOC exotherm is able to detect the failure of the DOC to produce NO2. Vehicle emissions data from a 6.6 L Duramax HD pick-up with DOC of various levels of thermal degradation is provided to support the diagnostic concept.

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO2 oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.

Tailored Conversion Coatings for Enhanced Adhesion to Metal

The use of silane chemistries tailored to promote the adhesion of performance and appearance coatings to metal substrates are requiring new methodologies for measuring, approving, and implementing on commercial aircraft. Engineering performance, lean manufacturing, environmental and employee safety considerations are driving the commercial aerospace industry to replace long standing conversion coating materials and processes. Tailored silane chemistries such as Boegel are being considered for many of these applications. Silanes work by reacting with metal oxides providing a strong covalent bond, cross linking to form a tough barrier and have an organic functional group tailored to react with the specific resin system in the subsequent coating. Traditionally conversion coatings such as anodize and chromate conversion coating performance is validated based on meeting standalone requirements.

High Speed Machining of CFRP Parts

High Speed Machining of CFRP Parts Investigation of the influence of new geometries, cutting datas and coolant capabilities on the surface finish of CFRP parts. State of the art: Different CFRP grades and machining conditions make geometry adjustments to the tool necessary. Mechanical failures through machining operations can be avoided in most of the cases. New unidirectional CFRP grades and dry machining processes again lead to machining problems. This study investigates new geometries to avoid heat damage with dry maching and air coolant in case of unidirectional CFRP. With help of a thermo camera and the surface investigation with a scanning electron microscope, heat damage can be analysed and therefore new geometries can be developed and tested. Target is to develop a new multi purpose CFRP geometry to meet the requirements of the future. The reduction of different geometries used leads to major cost savings. Presenter Ingo von Puttkamer, Guhring oHG
Training / Education

Introduction to Cooling Airflow Systems Web Seminar RePlay

Vehicle functional requirements, diesel emission regulations, and subsystem thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Severe duty cycles, minimal ram air, fouling, and sometimes unconventional package layouts present unique challenges to the designer. This course introduces many airflow integration issues and vehicle-level trade-offs that effect system performance and drive the design. The goal of this course is to introduce engineers and managers to the basic principles of diesel cooling airflow systems for commercial and off-road vehicles.
Training / Education

Nickel Metal Hydride (NiMH) Hybrid Battery Systems

This course from SAE International training partner, FutureTech*, is a MUST for everyone servicing hybrid vehicles. NiMH battery systems continue primary battery technology in hybrid vehicles and have been since the 2000 model year. If a technical professional doesn?t know the fundamentals of NiMH operation it is impossible for them to perform a solid diagnosis or repair. This course will concentrate on the NiMH technology, how it performs as it ages, how it can effect vehicle performance and fuel economy, and how to test it by using a scan tool.
Technical Paper

Numerical Investigation of Narrow-Band Noise Generation by Automotive Cooling Fans

Axial cooling fans are commonly used in electric vehicles to cool batteries with high heating load. One drawback of the cooling fans is the high aeroacoustic noise level resulting from the fan blades and the obstacles facing the airflow. To create a comfortable cabin environment in the vehicle, and to reduce exterior noise emission, a low-noise installation design of the axial fan is required. The purpose of the project is to develop an efficient computational aeroacoustics (CAA) simulation process to assist the cooling-fan installation design. This paper reports the current progress of the development, where the narrow-band components of the fan noise is focused on. Two methods are used to compute the noise source. In the first method the source is computed from the flow field obtained using the unsteady Reynolds-averaged Navier-Stokes equations (unsteady RANS, or URANS) model.

Principles of Engine Cooling Systems, Components and Maintenance

Completely revised as a result of the significant progress made in cooling system design and maintenance practices and procedures, HS-40 provides current, comprehensive information on the description, function, and maintenance of engine liquid-cooling systems used in light and heavy-duty vehicles. Information-packed chapters discuss the interrelation between the cooling system and other engine systems, cooling system components, general preventive maintenance, and troubleshooting.
Technical Paper

Duralumin All-Metal Airplane Construction

PSYCHOLOGY of the public, as well as engineering structure and aerodynamics, is involved in commercial aviation. The public has confidence in metal. With quantity production in view, the author and his associates considered costs of production as related to quantity and also costs of maintenance at airports and in the field, and chose metal as the material of construction. Structural members are fashioned from sheet duralumin rather than from tubes and a type of construction was evolved that can be made with the minimum investment in tools, that is cheap to put together and that can be repaired with the smallest amount of equipment and labor. For compression loads, duralumin has a great deal more strength for a given weight than has steel. It cannot be used, however, for compression members in combination with steel in tension members because of the difference in coefficient of expansion.
Technical Paper

Methods of Building Metal Airplane Structures

USEFUL load-carrying capacity is a measure of the comparative value of two airplanes of the same size, having identical powerplants, speed, rate of climb and other flying characteristics. It seems to be feasible to combine in the same airplane both the greatest ability to carry useful load and the least cost of construction. Blanked and pressed metal work offers substantial advantage to the extent that parts, particularly sub-assemblies, can be made directly by machine in complete units ready to set in the final assembly. The author shows and describes the methods followed by his organization in forming the members, building the frames and assembling the units of metal aircraft. Trusses are blanked and the web members pressed to ¾-circle form. Dies for long members are variable in length by being made in pieces that can be removed or inserted as desired. Flanged-tube sections are employed for truss chords.
Technical Paper

Self-Energizing Brakes

THE theory and characteristics of brakes of the Steeldraulic system are set forth and their application in practice is explained. Self-energizing brakes are said to be desirable because they allow large clearances, low pedal-effort and frictional coefficient and, if properly designed, give a high degree of efficiency with smooth uniform action. To accomplish these results, the controls should deliver equal and accurate actuation to all brakes at all times, be designed to minimize the possibility of becoming inoperative on account of dirt and rust, require no servicing, be noiseless and of good appearance, and remain unaffected by climatic changes. Shoe design should allow very liberal limits and tolerances in wheel, axle and drum assemblies, without causing erratic brake-action or noises. The brake hook-up should follow the simplest line and use the least number of connecting links.
Technical Paper

Alloy Steels and Their Application in the Automotive Industry

AFTER outlining the progress of research in the development of the alloy steels, the author says that alloys of steel containing nickel, chromium, and nickel and chromium, are the most important to the automotive industry, which is especially interested in alloys containing up to 5.0 per cent of nickel and up to approximately 1.5 per cent of chromium, with the carbon content ranging from 0.10 to 0.50 per cent. The additions of these amounts do not materially change the nature of the metallographic constituents, but the elements exert their influence on the physical properties largely by altering the rate of the structural changes. In straight carbon-steel, especially of large sections, it is not possible by quenching to retard the austenite transformation sufficiently to produce as good physical properties as are desired.
Technical Paper

Service Characteristics of Light Alloys

ALUMINUM and magnesium, being the lightest commercial metals and therefore the most suitable for aircraft construction, are discussed in their pure and alloyed states. Physical properties of the pure metals and their alloys are given and the effects of adding small quantities of alloying elements are shown. Heat-treating as a means of increasing the strength per unit weight of the alloys is discussed at length, together with the effects of natural aging and artificial aging at elevated temperatures and of quenching in hot and in cold water after heat-treating. The several types of corrosion are considered and resistance to corrosion of the metals and their various alloys are discussed. Protection afforded to aluminum alloy by a surface coating of pure aluminum is described, and other methods are mentioned.