Refine Your Search

Topic

Search Results

Standard

Tool and Die Steels

1970-05-01
HISTORICAL
J438B_197005
This standard covers the identification, classification, and chemical composition of tool and die steels for use by engineers, metallurgists, tool designers, tool room supervisors, heat treaters, and tool makers.
Standard

SPECIAL PURPOSE ALLOYS ("SUPERALLOYS")

1968-10-01
HISTORICAL
J467B_196810
The data given in Tables 1–4 are typical values only and are not intended for design parameters. Mechanical properties of the special purpose alloys depend greatly upon processing variables and heat treatment. It is recommended that design data be obtained by actual testing or by consultation with the producers of the alloys.
Standard

Special Purpose Alloys ("Superalloys")

2018-02-15
CURRENT
J467B_201802
The data given in Tables 1–4 are typical values only and are not intended for design parameters. Mechanical properties of the special purpose alloys depend greatly upon processing variables and heat treatment. It is recommended that design data be obtained by actual testing or by consultation with the producers of the alloys.
Standard

Magnesium Wrought Alloys

2018-01-09
CURRENT
J466_201801
This SAE Standard covers the most common magnesium alloys used in wrought forms, and lists chemical composition and minimum mechanical properties for the various forms. A general indication of the usage of the various materials is also provided.
Standard

MAGNESIUM WROUGHT ALLOYS

1989-12-01
HISTORICAL
J466_198912
This SAE Standard covers the most common magnesium alloys used in wrought forms, and lists chemical composition and minimum mechanical properties for the various forms. A general indication of the usage of the various materials is also provided.
Standard

Sintered Powder Metal Parts: Ferrous

2018-08-24
CURRENT
J471_201808
Powder metal (P/M) parts are manufactured by pressing metal powders to the required shape in a precision die and sintering to produce metallurgical bonds between the particles, thus generating the appropriate mechanical properties. The shape and mechanical properties of the part may be subsequently modified by repressing or by conventional methods such. as machining and/or heat treating. While powder metallurgy embraces a number of fields wherein metal powders may be used as raw materials, this standard is concerned primarily with information relating to mechanical components and bearings produced from iron-base materials.
Standard

SINTERED POWDER METAL PARTS: FERROUS

1973-08-01
HISTORICAL
J471_197308
Powder metal (P/M) parts are manufactured by pressing metal powders to the required shape in a precision die and sintering to produce metallurgical bonds between the particles, thus generating the appropriate mechanical properties. The shape and mechanical properties of the part may be subsequently modified by repressing or by conventional methods such. as machining and/or heat treating. While powder metallurgy embraces a number of fields wherein metal powders may be used as raw materials, this standard is concerned primarily with information relating to mechanical components and bearings produced from iron-base materials.
Standard

Liquid Penetrant Test Methods

1974-01-01
HISTORICAL
J426B_197401
The scope of this SAE Information Report is to supply the user with sufficient information so that he may decide whether liquid penetrant test methods apply to his particular inspection problem. Detailed technical information can be obtained by referring to Section 2.
Standard

Liquid Penetrant Test Methods

1978-06-01
HISTORICAL
J426C_197806
The scope of this SAE Information Report is to supply the user with sufficient information so that he may decide whether liquid penetrant test methods apply to his particular inspection problem. Detailed technical information can be obtained by referring to Section 2.
Standard

ULTRASONIC INSPECTION

1991-03-01
HISTORICAL
J428_199103
The scope of this SAE Information report is to provide basic information on ultrasonics, as applied in the field of nondestructive inspection. References to detailed information are listed in Section 2.
Standard

Ultrasonic Inspection

2018-01-09
CURRENT
J428_201801
The scope of this SAE Information report is to provide basic information on ultrasonics, as applied in the field of nondestructive inspection. References to detailed information are listed in Section 2.
Standard

Ultrasonic Inspection

1978-05-01
HISTORICAL
J428B_197805
The scope of this SAE Information Report is to provide basic information on ultrasonics, as applied in the field of nondestructive inspection. References to detailed information are listed in Section 2. Ultrasonic testing is a versatile nondestructive inspection method which is applicable to most solid materials, metallic or nonmetallic. Materials inspected include steel, aluminum, cast iron, concrete, rubber, glass, and plastics. Through these tests, surface and internal discontinuities such as laps, seams, voids, cracks, blow holes, inclusions, lack of bond, and porosity can be detected. Material thickness can be accurately measured from one side. Under certain conditions, materials at elevated temperatures can be inspected.
Standard

Tensile Test Specimens

1999-05-20
CURRENT
J416_199905
When required, unless otherwise specified in the SAE Standards or Recommended Practices, tensile test specimens for metals shall be selected and prepared in accordance with this report. ASTM E 8, Methods of Tension Testing of Metallic Materials, gives more detailed information on tensile testing procedure, and ASTM E 4, Methods of Load Verification of Testing Machines, provides information on testing equipment calibration. In recommending these specimens for use in tensile tests it is not intended to exclude entirely the use of other test specimens for special materials or for special forms of material. It is, however, recommended that these specimens be used wherever it is feasible. Machining of specimens shall be done in such a manner as to avoid leaving severe machining strains in the material. Specimens shall be finished so that the surfaces are smooth and free from nicks and tool marks. All ragged edges shall be smoothed.
Standard

Automotive Austempered Ductile (Nodular) Iron Castings (ADI)

2018-01-09
CURRENT
J2477_201801
This SAE Standard covers the mechanical and physical property requirements for Austempered Ductile Iron (ADI) castings used in automotive and allied industries. Specifically covered are: a Hardness b Tensile Strength c Yield Strength d Elongation e Modulus of Elasticity f Impact Energy g Microstructure In this document SI units are primary and in-lb units are derived. Appendix A provides general information and related resources on the microstructural, chemical and heat treatment requirements to meet the mechanical properties needed for ADI in particular service conditions and applications.
Standard

Automotive Austempered Ductile (Nodular) Iron Castings (ADI)

2004-05-26
HISTORICAL
J2477_200405
This SAE Standard covers the mechanical and physical property requirements for Austempered Ductile Iron (ADI) castings used in automotive and allied industries. Specifically covered are: a Hardness b Tensile Strength c Yield Strength d Elongation e Modulus of Elasticity f Impact Energy g Microstructure In this document SI units are primary and in-lb units are derived. Appendix A provides general information and related resources on the microstructural, chemical and heat treatment requirements to meet the mechanical properties needed for ADI in particular service conditions and applications.
Standard

Alloy and Temper Designation Systems for Aluminum

2018-01-09
CURRENT
J993_201801
This standard provides systems for designating wrought aluminum and wrought aluminum alloys, aluminum and aluminum alloys in the form of castings and foundry ingot, and the tempers in which aluminum and aluminum alloy wrought products and aluminum alloy castings are produced.
Standard

ALLOY AND TEMPER DESIGNATION SYSTEMS FOR ALUMINUM

1989-01-01
HISTORICAL
J993_198901
This standard provides systems for designating wrought aluminum and wrought aluminum alloys, aluminum and aluminum alloys in the form of castings and foundry ingot, and the tempers in which aluminum and aluminum alloy wrought products and aluminum alloy castings are produced.
Standard

DETECTION OF SURFACE IMPERFECTIONS IN FERROUS RODS, BARS, TUBES, AND WIRES

1991-02-01
HISTORICAL
J349_199102
This SAE Information Report provides a summary of several methods that are available for detecting, and in some instances detecting and measuring, surface imperfections in rods, bars, tubes, and wires. References relating to detailed technical information and to specific applications are enumerated in 2.2.
Standard

Nondestructive Tests

2017-12-20
CURRENT
J358_201712
Nondestructive tests are those tests which detect factors related to the serviceability or quality of a part or material without limiting its usefulness. Material defects such as surface cracks, laps, pits, internal inclusions, bursts, shrink, seam, hot tears, and composition analysis can be detected. Sometimes their dimensions and exact location can be determined. Such tests can usually be made rapidly. Processing results such as hardness, case depth, wall thickness, ductility, decarburization, cracks, apparent tensile strength, grain size, and lack of weld penetration or fusion may be detectable and measurable. Service results such as corrosion and fatigue cracking may be detected and measured by nondestructive test methods. In many cases, imperfections can be automatically detected so that parts or materials can be classified.
Standard

NONDESTRUCTIVE TESTS

1991-02-01
HISTORICAL
J358_199102
Nondestructive tests are those tests which detect factors related to the serviceability or quality of a part or material without limiting its usefulness. Material defects such as surface cracks, laps, pits, internal inclusions, bursts, shrink, seam, hot tears, and composition analysis can be detected. Sometimes their dimensions and exact location can be determined. Such tests can usually be made rapidly. Processing results such as hardness, case depth, wall thickness, ductility, decarburization, cracks, apparent tensile strength, grain size, and lack of weld penetration or fusion may be detectable and measurable. Service results such as corrosion and fatigue cracking may be detected and measured by nondestructive test methods. In many cases, imperfections can be automatically detected so that parts or materials can be classified.
X