Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Surface Texture Specification and Control

Surface texture is one of the most important topics in today"s world of design, development and performance. As tolerances are shrinking and performance demands are increasing, surface texture is rapidly becoming one of the most important aspects of engine and vehicle performance. Every moving component on a vehicle or engine is influenced by surface texture in one or more of the following ways: vibration, sealing, adhesion, traction, emissions, safety, durability, wear/failure analysis. Many of the industry"s top warranty issues (leaks, noise, vibration, etc.) are a direct result of surface texture implications.
Training / Education

Tire Forensic Analysis

This course provides a detailed description of tire failure modes, their potential causes, identification, and the sometimes-subtle nuances that go along with determination of tire failure. In addition, proper inspection techniques of tires will be discussed and samples will be available to reinforce the concepts learned. The course is helpful for investigators and individuals who need to  explore and explain tire failures and point out the failure contributing factors. The course will help to clarify failure root cause between tire production process deviation, tire design, and service application.
Training / Education

Introduction to Brake Control Systems ABS, TCS, and ESC

Once reserved for high-end luxury vehicles, electronic brake control systems are now required standard equipment on even the most inexpensive cars and trucks. Today, every new vehicle benefits from the optimized braking, enhanced acceleration, and improved stability that these systems provide. This comprehensive seminar introduces participants to the system-level design considerations, vehicle interface requirements, and inevitable performance compromises that must be addressed when implementing these technologies. The seminar begins by defining the tire-road interface and analyzing fundamental vehicle dynamics.
Training / Education

Tire and Wheel Safety Issues

One of the most important safety critical components on cars, trucks, and aircraft is the pneumatic tire. Vehicle tires primarily control stopping distances on wet and dry roads or runways and strongly influence over-steer/under-steer behavior in handling maneuvers of cars and trucks. The inflated tire-wheel assembly also acts as a pressure vessel that releases a large amount of energy when catastrophically deflated. The tire can also serve as a fulcrum, both directly and indirectly, in contributing to vehicle rollover. This seminar covers these facets of tire safety phenomena.
Training / Education

The Tire as a Vehicle Component

The principal functions of the pneumatic tire are to generate driving, braking, and cornering forces while safely carrying the vehicle load and providing adequate levels of ride comfort. This seminar explains how tire forces and moments are generated under different operating and service conditions and, in turn, demonstrates how these forces and moments influence various vehicle responses such as braking, handling, ride, and high-speed performance. The content focuses on the fundamentals of tire behavior in automobiles, trucks, and farm tractors, but also includes experimental and empirical results, when necessary.
Training / Education

Hydraulic Brake Systems for Passenger Cars and Light Trucks

Hydraulic brake systems, one of the most important safety features on many road vehicles today, must meet manufacturer and customer requirements in addition to Federal Motor Vehicle Safety Standards. This course will analyze automotive braking from a system's perspective, emphasizing legal requirements as well as performance expectations such as pedal feel, stopping distance, fade and thermal management. Calculations necessary to predict brake balance and key system sizing variables that contribute to performance will be discussed.
Training / Education

Damage Tolerance for Gas Turbine Engines

The simultaneous demands for reliability and minimum weight for aircraft and propulsion systems offer some of the most challenging technical problems that structural and safety engineers can encounter. Although much information is available on fracture mechanics and aircraft damage tolerance, this course specifically relates to damage tolerance for gas turbine engines. The need to consider damage tolerance more broadly in new engine designs has just recently been written into FAR 33.70 and new EASA guidelines.
Training / Education

Fundamentals of Fatigue Analysis

Fatigue is a structural failure mode that must be recognized and understood to develop products that meet life cycle durability requirements. In the age of lightweighting, fatigue strength is an important vehicle design requirement as engineers struggle to meet stringent weight constraints without adversely impacting durability. This technical concept course introduces the fatigue failure mode and analysis methods. It explains the physics of material fatigue, including damage accumulation that may progress to product failure over time, and it provides the needed foundation to develop effective fatigue prediction capabilities.
Training / Education

Basic Tire Mechanics and Applications

This course introduces basic tire mechanics, including tire construction components based on application type, required sidewall stamping in accordance with DoT/ECE regulations, tread patterns, regulatory and research testing on quality, tire inspections and basic tire failure identification. The course will provide you with information that you can use immediately on-the-job and apply to your own vehicle. This course is practical in nature and supplemented with samples and hands-on activities. It serves as a good primer for the in-depth SAE Tire Forensic Analysis course.
Training / Education

Basics of Silicone Rubber Science and Technology

Silicone rubber is comprised of inorganic-organic polymers. These materials consist of an inorganic backbone with organic side groups attached to silicon atoms. This family of polymers possesses unmatched versatility giving the formulator and user multiple forms and methods to cross link the polymers into rubber materials having the widest service temperature range of any rubber material. This course is designed to provide the participant with a thorough understanding of silicone’s engineering characteristics.
Training / Education

Introduction to Rubber Science and Technology

Rubber – a loosely cross-linked network of polymer chains that when strained to high levels will forcibly return to at or near it original dimensions. This course is designed to provide the participant with a thorough understanding of rubber’s engineering characteristics. This class will introduce the various sources of rubber, both natural and synthetic. The class will contrast the differences between rubber and plastics; including thermoplastic rubber. Detailed discussions on how to select the correct rubber polymer for the application, highlighting the pros and cons of each major rubber type.
Training / Education

Fundamentals of Vehicle Suspension Design

The design and development of vehicle suspensions significantly influences vehicle handling and ride comfort. Suspension system design excellence follows the basic laws of physics using design synthesis techniques, a methodical process for suspension geometry development. Suspension geometry is the foundation of vehicle performance from which high-confidence suspension components and tunings can be developed. Suspension component design continues to move toward mass and cost efficient designs with high levels of stiffness being essential to achieving design requirements.
Training / Education

Commercial Vehicle Braking Systems

2022-10-11
Increased public pressure to improve commercial truck safety and new stopping distance regulations have intensified the need to better understand the factors influencing heavy vehicle braking performance. To assist individuals and their organizations in preparing for these new truck braking standards, this seminar focuses attendees on understanding medium-duty hydraulic brake systems and heavy-duty air brake systems and how both systems' performance can be predicted, maintained and optimized.
Training / Education

High-Performance Brake Systems

2022-09-29
While most passenger car brake systems are quite robust and reliable under typical operating conditions, high-performance driving and/or racetrack operation generally require alternative design solutions to optimize consistency and longevity. Whether it is brake fluid fade, cracked rotor discs, chronic knockback, or insufficient brake pad life, the stresses of motorsports can pose unique challenges to even the very best brake system designs.
Training / Education

Fluids for Aerospace Hydraulic Systems

2022-05-13
This four-hour short course provides an introduction to fluids for aerospace hydraulic systems. Topics covered include an introduction to basics fluid properties, rheology, tribology, and fluid product development. In addition, the history and performance of different classes of fluids are discussed in detail, and specific failure modes such as erosion and sludge formation will be described. Along with an introduction to fluid degradation, information on used oil analysis test methods and interpretation will be provided.
Training / Education

Applied Vehicle Dynamics

2022-04-04
Take notes! Take the wheel! There is no better place to gain an appreciation for vehicle dynamics than from the driver’s seat. Spend three, intense days with a world-renowned vehicle dynamics engineer and SAE Master Instructor, his team of experienced industry engineers, and the BMW-trained professional driving instructors. They will guide you as you work your way through 12 classroom modules learning how and why vehicles go, stop and turn. Each classroom module is immediately followed by an engaging driving exercise on BMW’s private test track.
Training / Education

Vehicle Dynamics for Passenger Cars and Light Trucks

2022-03-30
This seminar will present an introduction to Vehicle Dynamics from a vehicle system perspective. The theory and applications are associated with the interaction and performance balance between the powertrain, brakes, steering, suspensions and wheel and tire vehicle subsystems. The role that vehicle dynamics can and should play in effective automotive chassis development and the information and technology flow from vehicle system to subsystem to piece-part is integrated into the presentation. Governing equations of motion are developed and solved for both steady and transient conditions.
Training / Education

Applied Brake Controls Test Track Experience ABS, TCS, and ESC

2022-01-24
Take notes.  Take a spin.  Repeat.  Six classroom modules (2 each for ABS, TCS and ESC!) are paired with six driving modules on a real-world ice and snow development test track in the Upper Peninsula of Michigan.  There's no better way to reinforce classroom learning than by grabbing the steering wheel.  All of the driving exercises have been specifically developed so that anyone can hop in the car and immediately link what you have just learned in the classroom. 
Training / Education

Corrosion Engineering and Prevention

The transportation industry, including motor vehicles, aircraft, rail, marine, commercial, off-road and defense vehicles, as well as infrastructures, energy sectors, raw materials, manufacturing, health and food industries all experience significant issues with corrosion which results in billions of dollars of loss each year. Corrosion education and prevention is essential to improve and increase the service life of parts and components which may have a significant impact on the economy of various industries and nations.
Training / Education

Fundamentals of Steering Systems

2021-11-09
Design and development of a modern steering system influences vehicle response to steering wheel input, driver effort, comfort, safety and fuel economy. In this interactive seminar participants will analyze the steering system from the road wheel to the steering wheel. Day one will begin with a deep dive into the anatomy and architecture of the lower steering system (wheel end, suspension geometry, linkages and steering gear), its effect on vehicle response and how forces and moments at the contact patch are converted to a torque at the pinion.
X