Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Filtration and Contamination Control for Aerospace Hydraulic Systems

This four-hour short course provides an introduction to contamination control principles in aircraft hydraulic systems. Topics covered include an introduction to the types of contamination in aircraft hydraulic systems, contaminant measurement, and reporting methods. In addition, the impact of contamination on hydraulic components is discussed in detail. Along with an introduction to filtration mechanisms, information on testing, rating, and specifying filters will be provided.
Standard

Refrigerant 12 Automotive Air-Conditioning Hose

2015-04-21
CURRENT
J51_201504
This SAE Standard covers reinforced hose, or hose assemblies, intended for conducting liquid and gaseous dichlorodifluoromethane (refrigerant 12) in automotive air-conditioning systems. The hose shall be designed to minimize permeation of refrigerant 12 and contamination of the system and to be serviceable over a temperature range of −30 to 120 °C (−22 to 248 °F). Specific construction details are to be agreed upon between user and supplier.1 NOTE—R12 refrigerant has been placed on a banned substance list due to its ozone depletion characteristics. SAE J51 specification will be phased out as new automotive A/C systems are using R134a. SAE J2064 is the Standard for refrigerant 134a hose. For refrigerant 134a use, refer to SAE J2064.
Standard

Low-Permeation Fuel Fill and Vent Tube

2007-07-02
CURRENT
J2405_200707
This SAE Standard covers the minimum requirements for a low-permeation tubing (100 g/m2·day or less) for use as a low pressure (14.5 kPa) liquid- or vapor-carrying component for use in gasoline or diesel fuel filler, vent, and vapor systems. The construction shall be designed to be functional over a temperature range of –40 °C to 100 °C for the T1 designation, or –40 °C to 125 °C for the T2 designation.
Standard

Push-On Hose and Mating Hose Fittings

2014-06-06
CURRENT
J2552_201406
SAE J2552 provides limited, dimensional and general performance requirements for low pressure, field attachable, push-on hose and their mating hose fittings. The intended application is for fluid and pneumatic power used with petroleum base hydraulic fluids, lube oils, water glycols and air, within the temperature ranges listed in Table 1. The maximum working pressure is 1.7 MPa (see Table 2). For air applications the maximum working pressure is at 0.7 MPa. Hose and hose fittings are manufactured within certain dimensions with tolerance ranges in order to provide the proper gripping and sealing. SAE J2552 hose from one manufacturer may not be compatible with SAE J2552 hose fittings supplied by another manufacturer. It is the responsibility of the fabricator to always follow the manufacturers’ instructions for proper preparation and fabrication of hose assemblies.
Standard

Connections for General Use and Fluid Power - Test Methods-Threadless Connections

2016-08-31
CURRENT
J2682_201608
This SAE standard specifies uniform methods for the testing of threadless connections for hydraulic fluid power applications. These connections are intended for general application and hydraulic systems on industrial equipment and commercial products. These connections shall be capable of providing leak proof connections in hydraulic systems operating from 95 kPa vacuum to working pressures specified by the manufacturer. Since many factors influence the pressure at which a hydraulic system will or will not perform satisfactorily, it is recommended that sufficient testing be conducted and reviewed by both the user and manufacturer to ensure that required performance levels are met.
Standard

SELECTION AND HEAT TREATMENT OF TOOL AND DIE STEELS

1970-04-01
HISTORICAL
J437_197004
The information in this report covers data relating to SAE J438, Tool and Die Steels, and is intended as a guide to the selection of the steel best suited for the intended purpose and to provide recommended heat treatments and other data pertinent to their use. Specific requirements as to physical properties are not included because the majority of tool and die steels are either worked or given special heat treatments by the purchaser. The purchaser may or may not elect to use the accompanying data for specification purposes.
Standard

Selection and Heat Treatment of Tool and Die Steels

2018-01-09
CURRENT
J437_201801
The information in this report covers data relating to SAE J438, Tool and Die Steels, and is intended as a guide to the selection of the steel best suited for the intended purpose and to provide recommended heat treatments and other data pertinent to their use. Specific requirements as to physical properties are not included because the majority of tool and die steels are either worked or given special heat treatments by the purchaser. The purchaser may or may not elect to use the accompanying data for specification purposes.
Standard

WROUGHT NICKEL AND NICKEL-RELATED ALLOYS

1976-07-01
HISTORICAL
J470_197607
This Report presents general information on over 50 alloys in which nickel either predominates or is a significant alloying element. It covers primarily wrought materials, and is not necessarily all inclusive. Values given are in most cases average or nominal, and if more precise values are required the producer(s) should be contacted. This report does not cover the so-called "superalloys," or the iron base stainless steels. Refer to SAE J467, Special Purpose Alloys, and SAE J405, Chemical Compositions of SAE Wrought Stainless Steels, respectively, for data on these alloys.
Standard

Wrought Nickel and Nickel-Related Alloys

2018-02-15
CURRENT
J470_201802
This Report presents general information on over 50 alloys in which nickel either predominates or is a significant alloying element. It covers primarily wrought materials, and is not necessarily all inclusive. Values given are in most cases average or nominal, and if more precise values are required the producer(s) should be contacted. This report does not cover the so-called "superalloys," or the iron base stainless steels. Refer to SAE J467, Special Purpose Alloys, and SAE J405, Chemical Compositions of SAE Wrought Stainless Steels, respectively, for data on these alloys.
Standard

Hydrodynamic Drives Terminology

2018-09-25
WIP
J641
Since the torque converter and fluid coupling are commonly used components of automatic transmissions in industry, the SAE appointed a committee to standardize terminology, test procedure, data recording, design symbols, and so forth, in this field. The following committee recommendations will facilitate a clear understanding for engineering discussions, comparisons, and the preparation of technical papers. The recommended usages represent the predominant practice or the acceptable practice. Where agreement is not complete, alternates have been included for clarification. EXAMPLE: Two systems of blade angle designations are described. Consequently when a blade angle is specified, the system should be designated. This SAE Recommended Practice deals only with the physical parts and dimensions and does not attempt to standardize the design considerations, such as the actual fluid flow angle resulting from the physical blade shape.
Standard

Hydrodynamic Drives Terminology

2012-06-04
CURRENT
J641_201206
Since the torque converter and fluid coupling are commonly used components of automatic transmissions in industry, the SAE appointed a committee to standardize terminology, test procedure, data recording, design symbols, and so forth, in this field. The following committee recommendations will facilitate a clear understanding for engineering discussions, comparisons, and the preparation of technical papers. The recommended usages represent the predominant practice or the acceptable practice. Where agreement is not complete, alternates have been included for clarification. This SAE Recommended Practice deals only with the physical parts and dimensions and does not attempt to standardize the design considerations, such as the actual fluid flow angle resulting from the physical blade shape.
Standard

Fluid for Passenger Car Type Automatic Transmissions

2000-02-22
CURRENT
J311_200002
This SAE Information Report details some of the equipment and procedures used to measure critical characteristics of automatic transmission fluid (ATF) used in current automatic transmissions. It is intended to assist those concerned with the design of transmission components, and with the selection and marketing of automatic transmission fluids for the use in passenger car and light-duty truck automatic transmissions. The information contained herein will be helpful in understanding the terms related to properties, designations, and service applications of automatic transmission fluids.
Standard

Qualifications for Four-Way Subbase Mounted Air Valves for Automotive Manufacturing Applications

2005-05-25
CURRENT
J2051_200505
This SAE Recommended Practice describes the requirements necessary for four-way subbase mounted, directional air-control valves to be used in automotive manufacturing applications. It includes minimum performance, operation, and physical requirements to qualify the valves for service in automotive manufacturing applications. Included are spool, poppet, and sliding disc types of air valves for pressures in a range of vacuum to 1034 kPa (150 lb/in2) gage, and temperatures from −18 to 60 °C (0 to 140 °F).
Standard

CONTROL VALVE TEST PROCEDURE

1990-05-01
HISTORICAL
J747_199005
This SAE Standard applies to hydraulic directional control valves as applied to self-propelled work machines referenced in SAE J1116. It describes a laboratory test procedure for evaluating: a Flow versus pressure drop b Leakage rate c Operating effort d Metering characteristics versus spool travel, pilot pressure, or electrical current e Relief valve characteristics The document applies to single and multiple section hydraulic directional control valves. This document illustrates axial, manually operated valves although the test procedure is applicable to other input forms such as rotary actuation, electric current, hydraulic or pneumatic pressure. NOTE—Performance characteristics such as metering hysteresis or dynamic response may have a significant effect on some of these tests.
X