Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Commercial and Off-Road Vehicle Cooling Airflow Systems

Vehicle functional requirements, emission regulations, and thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Given the expected increase in emission-related heat rejection, suppliers and vehicle manufacturers must work together as partners in the design, selection, and packaging of cooling system components. An understanding and appreciation of airflow integration issues and vehicle-level trade-offs that effect system performance are important to the team effort. The severe duty cycles, minimal ram air, and sometimes unconventional package layouts present unique challenges.
Training / Education

Basics of Silicone Rubber Science and Technology

Silicone rubber is comprised of inorganic-organic polymers. These materials consist of an inorganic backbone with organic side groups attached to silicon atoms. This family of polymers possesses unmatched versatility giving the formulator and user multiple forms and methods to cross link the polymers into rubber materials having the widest service temperature range of any rubber material. This course is designed to provide the participant with a thorough understanding of silicone’s engineering characteristics.
Video

Neural Network-based Optimal Control for Advanced Vehicular Thermal Management Systems

2011-12-05
Advanced vehicular thermal management system can improve engine performance, minimize fuel consumption, and reduce emissions by harmoniously operating computer-controlled servomotor components. In this paper, a neural network-based optimal control strategy is proposed to regulate the engine temperature through the advanced cooling system. Presenter Asma Al Tamimi, Hashemite University
Video

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-11-29
Today CFD is an important tool for engineers in the automotive industry who model and simulate fluid flow. For the complex field of Underhood Thermal Management, CFD has become a very important tool to engineer the cooling airflow process in the engine bay of vehicles. Presenter Peter Gullberg, Chalmers University of Technology
Video

High Speed Machining of CFRP Parts

2012-03-16
High Speed Machining of CFRP Parts Investigation of the influence of new geometries, cutting datas and coolant capabilities on the surface finish of CFRP parts. State of the art: Different CFRP grades and machining conditions make geometry adjustments to the tool necessary. Mechanical failures through machining operations can be avoided in most of the cases. New unidirectional CFRP grades and dry machining processes again lead to machining problems. This study investigates new geometries to avoid heat damage with dry maching and air coolant in case of unidirectional CFRP. With help of a thermo camera and the surface investigation with a scanning electron microscope, heat damage can be analysed and therefore new geometries can be developed and tested. Target is to develop a new multi purpose CFRP geometry to meet the requirements of the future. The reduction of different geometries used leads to major cost savings. Presenter Ingo von Puttkamer, Guhring oHG
Training / Education

Introduction to Cooling Airflow Systems Web Seminar RePlay

Anytime
Vehicle functional requirements, diesel emission regulations, and subsystem thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Severe duty cycles, minimal ram air, fouling, and sometimes unconventional package layouts present unique challenges to the designer. This course introduces many airflow integration issues and vehicle-level trade-offs that effect system performance and drive the design. The goal of this course is to introduce engineers and managers to the basic principles of diesel cooling airflow systems for commercial and off-road vehicles.
Technical Paper

Numerical Investigation of Narrow-Band Noise Generation by Automotive Cooling Fans

2020-09-30
2020-01-1513
Axial cooling fans are commonly used in electric vehicles to cool batteries with high heating load. One drawback of the cooling fans is the high aeroacoustic noise level resulting from the fan blades and the obstacles facing the airflow. To create a comfortable cabin environment in the vehicle, and to reduce exterior noise emission, a low-noise installation design of the axial fan is required. The purpose of the project is to develop an efficient computational aeroacoustics (CAA) simulation process to assist the cooling-fan installation design. This paper reports the current progress of the development, where the narrow-band components of the fan noise is focused on. Two methods are used to compute the noise source. In the first method the source is computed from the flow field obtained using the unsteady Reynolds-averaged Navier-Stokes equations (unsteady RANS, or URANS) model.
Book

Principles of Engine Cooling Systems, Components and Maintenance

1990-10-01
Completely revised as a result of the significant progress made in cooling system design and maintenance practices and procedures, HS-40 provides current, comprehensive information on the description, function, and maintenance of engine liquid-cooling systems used in light and heavy-duty vehicles. Information-packed chapters discuss the interrelation between the cooling system and other engine systems, cooling system components, general preventive maintenance, and troubleshooting.
Book

SAE Ferrous Materials Standards Manual - 2004 Edition

2004-07-21
The 2004 SAE Ferrous Materials Standards Manual provides a comprehensive compilation of the SAE Technical Reports relating to specifications, testing, and defining of Ferrous Materials. These standards, Recommended Practices, and Information Reports have been developed by Carbon and Alloy Steels Committee, Metals Test Procedures Committee, Automotive Iron and Steel Castings Committee, Sheet and Strip Steel Committee, Elevated Temperature Properties of Ferrous Metals Committee who comprise the Metals Technical Executive Committee (MTEC). MTEC also governs the other Standards, Recommended Practices, and Information Reports that have been developed by prior division that are now inactive. As an informational guide and background for the values and procedures in the SAE Technical Report, HS-30 also includes Examples of Related SAE Technical Papers.
Book

Lightweight MagnesiumTechnology 2001- 2005

2006-03-20
The advancements and expanded usage of magnesium by the automotive industry are highlighted in this publication which contains 46 SAE Technical Papers presented by technology experts at SAE events from 2001 -2005. This information will aid in improving processes, developing new applications, and identifying new technologies to further the competitive edge of magnesium as a lightweight, recyclable, and viable metal to meet global automotive needs. An increased awareness of the benefits ands features of this light weight structural material has opened a wide range of applications within the automotive industry. Examples include instrument panel structures, seat frames, center consoles, transmission cases, front-end and radiator support structures, and hybrid magnesium powertrains. The advancement continues toward developing even higher-performing alloys to further the competitive edge of magnesium.
Training / Education

Metallurgy of Precipitation Strengthening

Anytime
This online course teaches about the microscopic changes that take place in a precipitation strengthened alloy and their effects on the properties of the alloy. The effects of the different heat treating steps (solution treatment, quench, and aging) and heat treating process parameters (solution treatment temperature and time, quench rate, and aging temperature and time) on the alloy microstructure and the effects on alloy strength are discussed. The course is divided into five modules followed by a quiz.
Technical Paper

Alloy Steels and Their Application in the Automotive Industry

1928-01-01
280058
AFTER outlining the progress of research in the development of the alloy steels, the author says that alloys of steel containing nickel, chromium, and nickel and chromium, are the most important to the automotive industry, which is especially interested in alloys containing up to 5.0 per cent of nickel and up to approximately 1.5 per cent of chromium, with the carbon content ranging from 0.10 to 0.50 per cent. The additions of these amounts do not materially change the nature of the metallographic constituents, but the elements exert their influence on the physical properties largely by altering the rate of the structural changes. In straight carbon-steel, especially of large sections, it is not possible by quenching to retard the austenite transformation sufficiently to produce as good physical properties as are desired.
Technical Paper

Pistons and Oil-Trapping Rings for Maintaining an Oil Seal

1928-01-01
280054
PROVISION is made, in the piston and rings described by the author, for an adequate flow of heat from all parts of the piston-head to the cylinder-wall by means of adequate cross-section of aluminum alloy in the head and a tongue-and-groove type of piston-ring structure which provides a greater amount of surface than is usual for heat transfer. A labyrinth oil-seal is provided which aids heat transference and prevents leakage past the piston-rings, and the heat transfer is said to be such that the heat does not destroy the oil seal between the piston and the ring. Charts are included that show the effects in reduced temperatures, oil consumption and gas leakage with the construction described. Attention is given also to a skirt construction most suitable to use with the piston-head and rings described.
Technical Paper

Service Characteristics of Light Alloys

1929-01-01
290064
ALUMINUM and magnesium, being the lightest commercial metals and therefore the most suitable for aircraft construction, are discussed in their pure and alloyed states. Physical properties of the pure metals and their alloys are given and the effects of adding small quantities of alloying elements are shown. Heat-treating as a means of increasing the strength per unit weight of the alloys is discussed at length, together with the effects of natural aging and artificial aging at elevated temperatures and of quenching in hot and in cold water after heat-treating. The several types of corrosion are considered and resistance to corrosion of the metals and their various alloys are discussed. Protection afforded to aluminum alloy by a surface coating of pure aluminum is described, and other methods are mentioned.
Technical Paper

Modern Light Alloys and Their Application to Aircraft-Engine Design

1929-01-01
290063
A NUMBER of the more important commercial alloys having aluminum as their base are discussed by the author, who points out their main physical characteristics and outlines methods which can be used in their fabrication, indicating in a general way which alloys are best suited to various aircraft-engine requirements. Tables are given showing chemical compositions and physical properties, including a table of physical properties of various casting alloys at elevated temperatures. Special-purpose alloys are commented upon, and also a new aluminum alloy for pistons which is beginning to find commercial application and possesses properties particularly desirable in aircraft engines. Recent developments in magnesium alloys and their application to aircraft-engine design are specified, tables of physical properties are given, and comments are made on the characteristics of the material as compared with aluminum alloys.
X