Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Effects of Methane/Hydrogen Blends On Engine Operation: Experimental And Numerical Investigation of Different Combustion Modes

2010-10-25
2010-01-2165
The introduction of alternative fuels is crucial to limit greenhouse gases. CNG is regarded as one of the most promising clean fuels given its worldwide availability, its low price and its intrinsic properties (high knocking resistance, low carbon content...). One way to optimize dedicated natural gas engines is to improve the CNG slow burning velocity compared to gasoline fuel and allow lean burn combustion mode. Besides optimization of the combustion chamber design, hydrogen addition to CNG is a promising solution to boost the combustion thanks to its fast burning rate, its wide flammability limits and its low quenching gap. This paper presents an investigation of different methane/hydrogen blends between 0% and 40 vol. % hydrogen ratio for three different combustion modes: stoichiometric, lean-burn and stoichiometric with EGR.
Journal Article

Direct Injection of High Pressure Gas: Scaling Properties of Pulsed Turbulent Jets

2010-10-25
2010-01-2253
Existing gasoline DI injection equipment has been modified to generate single hole pulsed gas jets. Injection experiments have been performed at combinations of 3 different pressure ratios (2 of which supercritical) respectively 3 different hole geometries (i.e. length to diameter ratios). Injection was into a pressure chamber with optical access. Injection pressures and injector hole geometry were selected to be representative of current and near-future DI natural gas engines. Each injector hole design has been characterized by measuring its discharge coefficient for different Re-levels. Transient jets produced by these injectors have been visualized using planar laser sheet Mie scattering (PLMS). For this the injected gas was seeded with small oil droplets. The corresponding flow field was measured using particle image velocimetry (PIV) laser diagnostics.
Journal Article

Experimental-Numerical Analysis of Nitric Oxide Formation in Partially Stratified Charge (PSC) Natural Gas Engines

2009-11-02
2009-01-2783
Lean burn natural gas engines have high potential in terms of efficiency and NOx emissions in comparison with stoichiometric natural gas engines, and much lower particulate emissions than diesel engines. They are a promising solution to meet the increasingly stringent exhaust emission targets for both light and heavy-duty engines. Partially Stratified-Charge (PSC) is a novel concept which was conceived by prof. Evans (University of British Columbia, Vancouver). This technique allows to further limit pollutant emissions and improve efficiency of an otherwise standard spark-ignition engine fuelled by natural gas, operating with lean air-fuel ratio. The potential of the PSC technique lies in the control of load without throttling by further extending the lean flammability limit.
Journal Article

The Effect of Fuel Composition on Performance and Emissions of a Variety of Natural Gas Engines

2010-05-05
2010-01-1476
Work was performed to determine the feasibility of operating heavy-duty natural gas engines over a wide range of fuel compositions by evaluating engine performance and emission levels. Heavy-duty compressed natural gas engines from various engine manufacturers, spanning a range of model years and technologies, were evaluated using a diversity of fuel blends. Performance and regulated emission levels from these engines were evaluated using natural gas fuel blends with varying methane number (MN) and Wobbe Index in a dynamometer test cell. Eight natural gas blends were tested with each engine, and ranged from MN 75 to MN 100. Test engines included a 2007 model year Cummins ISL G, a 2006 model year Cummins C Gas Plus, a 2005 model year John Deere 6081H, a 1998 model year Cummins C Gas, and a 1999 model year Detroit Diesel Series 50G TK. All engines used lean-burn technology, except for the ISL G, which was a stoichiometric engine.
Journal Article

A Study of Controlled Auto-Ignition in Small Natural Gas Engines

2013-10-15
2013-32-9098
Research has been conducted on Controlled Auto-Ignition (CAI) engine with natural gas. CAI engine has the potential to be highly efficient and to produce low emissions. CAI engine is potentially applicable to automobile engine. However due to narrow operating range, CAI engine for automobile engine which require various speed and load in real world operation is still remaining at research level. In comparison some natural gas engines for electricity generation only require continuous operation at constant load. There is possibility of efficiency enhancement by CAI combustion which is running same speed at constant load. Since natural gas is primary consisting of methane (CH4), high auto-ignition temperature is required to occur stable auto-ignition. Usually additional intake heat required to keep stable auto-ignition. To keep high compression temperature, single cylinder natural gas engine with high compression ratio (CR=26) was constructed.
Journal Article

Study of the Early Flame Development in a Spark-Ignited Lean Burn Four-Stroke Large Bore Gas Engine by Fuel Tracer PLIF

2014-04-01
2014-01-1330
In this work the pre- to main chamber ignition process is studied in a Wärtsilä 34SG spark-ignited lean burn four-stroke large bore optical engine (bore 340 mm) operating on natural gas. Unburnt and burnt gas regions in planar cross-sections of the combustion chamber are identified by means of planar laser induced fluorescence (PLIF) from acetone seeded to the fuel. The emerging jets from the pre-chamber, the ignition process and early flame propagation are studied. Measurements reveal the presence of a significant temporal delay between the occurrence of a pressure difference across the pre-chamber holes and the appearance of hot burnt/burning gases at the nozzle exit. Variations in the delay affect the combustion timing and duration. The combustion rate in the pre-chamber does not influence the jet propagation speed, although it still has an effect on the overall combustion duration.
Journal Article

Systematic Development of Highly Efficient and Clean Engines to Meet Future Commercial Vehicle Greenhouse Gas Regulations

2013-09-24
2013-01-2421
With increasing energy prices and concerns about the environmental impact of greenhouse gas (GHG) emissions, a growing number of national governments are putting emphasis on improving the energy efficiency of the equipment employed throughout their transportation systems. Within the U.S. transportation sector, energy use in commercial vehicles has been increasing at a faster rate than that of automobiles. A 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected from 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. and global economies.
Journal Article

Investigation of a Methane Scavenged Prechamber for Increased Efficiency of a Lean-Burn Natural Gas Engine for Automotive Applications

2015-04-14
2015-01-0866
Scarce resources of fossil fuels and increasingly stringent exhaust emission legislation push towards a stronger focus to alternative fuels. Natural gas is considered a promising solution for small engines and passenger cars due to its high availability and low carbon dioxide emissions. Furthermore, natural gas indicates great potential of increased engine efficiency at lean-burn operation. However, the ignition of these lean air/fuel mixtures leads to new challenges, which can be met by fuel scavenged prechambers. At the Institute of Internal Combustion Engines of the Technische Universitaet Muenchen an air cooled natural gas engine with a single cylinder displacement volume of 0.5 L is equipped with a methane scavenged prechamber for investigations of the combustion process under real engine conditions. The main combustion chamber is supplied with a lean premixed air/fuel mixture.
Journal Article

Development of a Phenomenological Dual-Fuel Natural Gas Diesel Engine Simulation and Its Use for Analysis of Transient Operations

2014-10-13
2014-01-2546
Abundant supply of Natural Gas (NG) is U.S. and cost-advantage compared to diesel provides impetus for engineers to use alternative gaseous fuels in existing engines. Dual-fuel natural gas engines preserve diesel thermal efficiencies and reduce fuel cost without imposing consumer range anxiety. Increased complexity poses several challenges, including the transient response of an engine with direct injection of diesel fuel and injection of Compressed Natural Gas (CNG) upstream of the intake manifold. A 1-D simulation of a Cummins ISX heavy duty, dual-fuel, natural gas-diesel engine is developed in the GT-Power environment to study and improve transient response. The simulated Variable Geometry Turbine (VGT)behavior, intake and exhaust geometry, valve timings and injector models are validated through experimental results. A triple Wiebe combustion model is applied to characterize experimental combustion results for both diesel and dual-fuel operation.
Journal Article

Evaluation of Engine Performance and Combustion in Natural Gas Engine with Pre-Chamber Plug under Lean Burn Conditions

2014-11-11
2014-32-0103
Engines using natural gas as their main fuel are attracting attention for their environmental protection and energy-saving potential. There is demand for improvement in the thermal efficiency of engines as an energy-saving measure, and research in this area is being actively pursued on spark ignition engines and HCCI engines. In spark ignition gas engines, improving combustion under lean condition and EGR (exhaust gas recirculation) condition is an issue, and many large gas engines use a pre-chamber. The use of the pre-chamber approach allows stable combustion of lean gas mixtures at high charging pressure, and the reduction of NOx emissions. In small gas engines, engine structure prevents the installation of pre-chambers with adequate volume, and it is therefore unlikely that the full benefits of the pre-chamber approach will be derived.
Technical Paper

Effects of EGR, Variable Valve Timing, High Turbulence and Water Injection on Efficiency and Emissions of a HD Stoichiometric Natural Gas Engine

2021-09-05
2021-24-0048
The EU recently decided to reduce CO2 emissions of commercial vehicle fleets by 30% until 2030. One possible way to achieve this target is to convert commercial vehicle diesel engines into stoichiometric natural gas engines. Based on this, a commercial vehicle single cylinder diesel engine with variable valve actuation and high-pressure EGR is converted into natural gas operation to increase efficiency and thus reduce CO2. Additionally, a water injection system is integrated. All three technologies are investigated on their own and in combination. To reduce longer combustion durations caused by Miller valve timing and charge dilution, a piston bowl with extra high turbulence generation is designed. Additionally, a swirl variation is carried out. The results show, that high swirl motion and high turbulence can lead to a disadvantage in efficiency despite faster combustion durations due to higher wall heat losses.
Technical Paper

A Study on Prediction of Unburned Hydrocarbons in Active Pre-chamber Gas Engine: Combustion Analysis Using 3D-CFD by Considering Wall Quenching Effects

2021-09-05
2021-24-0049
To reproduce wall quenching phenomena using 3D-CFD, a wall quenching model was constructed based on the Peclet number. The model was further integrated with the flame propagation model. Combustion analysis showed that that a large amount of unburned hydrocarbons (UHCs) remained in the piston clevis and small gaps. Furthermore, the model was capable of predicting the increase in UHC emissions when there was a delay in the ignition time. The flame front cells were plotted on Peters' premixed turbulent combustion diagram to identify transitions in the combustion states. It was found that the flame surface transitioned from corrugated flamelets through thin reaction zones to wrinkled flamelets and further to laminar flamelets, which led to wall quenching. The turbulent Reynolds number (Re) decreased rapidly due to the increase in laminar flame speed and flame thickness and the decrease in turbulent intensity and turbulent scale.
Technical Paper

Modeling of Three Way Catalyst Behavior Under Steady and Transient Operations in a Stoichiometric Natural Gas Fueled Engine

2021-09-05
2021-24-0074
Methane abatement in the exhaust gas of natural gas engines is much more challenging in respect to the oxidation of other higher order hydrocarbons. Under steady state λ sweep, the methane conversion efficiency is high at exact stoichiometric, and decreases steeply under both slightly rich and slightly lean conditions. Transient lean to rich transitions can improve methane conversion at the rich side. Previous experimental work has attributed the enhanced methane conversion to activation of methane steam reforming. The steam reforming rate, however, attenuates over time and the methane conversion rate gradually converges to the low steady state values. In this work, a reactor model is established to predict steady state and transient transition characteristics of a three-way catalyst (TWC) mounted in the exhaust of a natural gas heavy-duty engine.
Technical Paper

Experimental Investigation of the Influence of Ignition System Parameters on Combustion in a Rapid Compression-Expansion Machine

2020-04-14
2020-01-1122
Lean burn combustion concepts with high mean effective pressures are being pursued for large gas engines in order to meet future stringent emission limits while maintaining high engine efficiencies. Since severe boundary conditions for the ignition process are encountered with these combustion concepts, the processes of spark ignition and flame initiation are important topics of applied research, which aims to avoid misfiring and to keep cycle-to-cycle combustion variability within reasonable limits. This paper focuses on the fundamental investigation of early flame kernel development using different ignition system settings. The investigations are carried out on a rapid compression-expansion machine in which the spark ignition process can be observed under engine-like pressure and excess air ratio conditions while low flow velocities are maintained.
Technical Paper

Parametric Investigation of Two-Stage Pilot Diesel Injection on the Combustion and Emissions of a Pilot Diesel Compression Ignition Natural Gas Engine at Low Load

2020-06-23
2020-01-5056
The purpose of this study is to evaluate the impact of two-stage pilot injection parameters on the combustion and emissions of pilot diesel compression ignition natural gas (CING) engine at low load. Experiments were performed using a diesel/natural gas dual-fuel engine, which was modified from a six-cylinder diesel engine. The effect of injection timing and injection pressure of two-stage pilot diesel were analyzed in order to reduce both the fuel consumption and total hydrocarbon (HC) and carbon monoxide (CO) emissions under low load conditions. The results indicate that, because injection timing can determine the degree of pilot diesel stratification, in-cylinder thermodynamic state, and the available mixing time prior to the combustion, the combustion process can be controlled and optimized through adjusting injection timing.
Technical Paper

Prediction of Driving Cycles by Means of a Co-Simulation Framework for the Evaluation of IC Engine Tailpipe Emissions

2020-06-30
2020-37-0011
The reliable prediction of pollutant emissions generated by IC engine powertrains during the WLTP driving cycle is a key aspect to test and optimize different configurations, in order to respect the stringent emission limits. This work describes the application of an integrated modeling tool in a co-simulation environment, coupling a 1D fluid dynamic code for engine simulation with a specific numerical code for aftertreatment modelling by means of a robust numerical approach, to achieve a complete methodology for detailed simulations of driving cycles. The main goal is to allow an accurate 1D simulation of the unsteady flows along the intake and exhaust systems and to apply advanced thermodynamic combustion models for the calculation of cylinder-out emissions.
Technical Paper

Assessment of the Knock Prediction Capabilities with Single-Zone Thermodynamic Model of SI Engine and Detailed Chemical Kinetic Mechanisms of Fuel Combustion

2021-09-21
2021-01-1145
Assessment of the boundaries for self-ignition of unburned charge in spark ignition engines (also related to knock) is required for development of the engine concepts and controls with respect to charge composition, spark advance and valve timing when designing the gas engines with wide range of the fuel compositions and converting compression ignition engines to gas engines. In this paper the combination of the single-zone model of the SI engine and chemical kinetics modeling is evaluated as a rapid prototyping tool for prediction of the self-ignition of the unburned charge in SI engine. The single-zone model simulates the cylinder pressure history based on Wiebe heat release function. The simulation of the self-ignition of the unburned charge is performed with coupled solution of the system of ordinary differential equations for temperature and species concentration with detailed chemical kinetic mechanism. Three fuels were considered: primary reference fuel, methane, hydrogen.
Technical Paper

Spark Ignition Discharge Characteristics under Quiescent Conditions and with Convective Flows

2021-09-21
2021-01-1157
The arc characteristics and discharge behavior of a representative inductive spark ignition system were characterized with a spark plug calorimeter and a constant volume vessel used to create high-pressure crossflow velocities through the gap of the spark plug. A 14 mm diameter natural gas engine spark plug was used for the measurements. The discharges were into a non-combusting gas, primarily nitrogen. The spark plug calorimeter was used to determine the electrical-to-thermal energy conversion in the spark gap under quiescent conditions, while the constant volume vessel was used to study ignition arc structure in convective crossflows and imaged with a high-speed camera. Topics included the effect of crossflow velocity, pressure (up to 20 bar at 300 K), and gap distance on breakdown voltage, arc duration and delivered electrical energy. Also of interest was the amount of remaining electrical energy on the coil versus spark duration in a cross flow.
Technical Paper

Analysis of a Gas Engine with Arbitrary Mixture Ratio of H2 and CNG for HDV

2021-09-21
2021-01-1177
To reduce exhaust emissions in commercial vehicles, hydrogen, as a carbon-free fuel, is a reasonable alternative to conventional fuels. In order to circumvent the current problem of hydrogen availability, the use of a gas engine for heavy duty vehicles (HDV), which is able to operate with pure compressed natural gas (CNG), pure hydrogen as well as any mixture of these both gases, is sensible. For this purpose, an operating concept for a gas engine was developed, which is able to operate with an arbitrary hydrogen-natural gas mixture ratio. Therefore, the mixture formation of a hydrogen-natural gas-air mixture was analyzed in a 3D CFD simulation. The results for pure hydrogen and pure CNG operation show a very good homogenization of the fuel distribution at the point of ignition when an outward-opening injector was used.
Journal Article

Dual-Point Laser Ignition and its Location Effects on Combustion in Lean-Burn Gas Engine

2015-06-01
2015-01-9041
As a result of the excavation of unconventional sources of natural gas, which has rich reserves, has attracted attention as a fuel for use in natural gas engines for power generation. From the viewpoints of efficient resource utilization and environmental protection, lean burn is an attractive technique for realizing a higher thermal efficiency with lower NOx emissions. However, ignition systems have to be improved for lean-burn operations. Laser ignition, which is expected to serve as an alternative to spark plug ignition, can decrease the heat loss and has no restriction on the ignition location because of the absence of an electrode. Consequently, an extension of the lean-burn limit by laser ignition has been demonstrated. In this study, we investigated the effects of the location and number of laser ignition points on engine performance and exhaust emissions. Laser ignition was also compared with conventional spark plug ignition.
X