Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Robust Design of Control Systems with Physical System Variances

2009-04-20
2009-01-1041
Today’s automotive control system engineering requires precision and accuracy. The cost of a controller designed with conservative margins may increase significantly, causing the design, when produced and marketed, to be less competitive. On the other hand, a design with too little margin may lead to system malfunction under marginal environment conditions or due to component aging. A robust design is one that is immune to the effects of component variance due to tolerance, temperature, and aging, among other factors. Achieving a robust design involves careful analysis of the controller and plant operating together. This paper discusses how MATLAB and Simulink can be leveraged to ensure the robustness of a mechatronic system design. The merits of the network approach as a technique for modeling physical systems as an alternative to the signal flow (block diagram) approach are also discussed.
Technical Paper

Research of Electronically Controlled Throttle System for Large Motorcycles

2009-04-20
2009-01-1047
There are various demands concerning the motorcycle rider’s throttle input such as nonlinearly engine output attribute control and maximum speed control. To realize those demands by electronic control, we mounted the Drive-by-Wire (DBW) throttle system, which is currently being used on existing automobiles, to motorcycles, but the system failed to meet the demands of the motorcycle. Response to the throttle speed change was an issue; therefore, we built up the control system to satisfy the motorcycle’s demand for response by changing the high speed response equation of adaptive sliding mode control and adding the hysteresis property correction equation of the throttle body drive-train. As a result, we could realize response equivalent to that of a mechanical throttle.
Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Technical Paper

Research and Development of Microwave Plasma Combustion Engine (Part II: Engine Performance of Plasma Combustion Engine)

2009-04-20
2009-01-1049
The objective of this study was to develop an innovative microwave-induced plasma ignition system to improve the fuel economy of a current engine and achieve a higher efficiency without any configuration modifications. A new plasma generation technique was proposed for a stable and intense ignition source. A microwave plasma combustion system was developed consisting of a spark plug, microwave transfer system, and control system. A magnetron, like that found in a microwave oven, was used as a microwave oscillator. The spark plug had a microwave antenna inside that generated plasma in the engine cylinders. The microwave transfer system transmitted microwave power from the oscillator to the antenna. Combustion experiments were performed using a single-cylinder research engine. The microwave plasma expanded the range of lean operating conditions. The single-cylinder engine had an indicated mean effective pressure (IMEP) of 275 kPa at an engine speed of 2000 rpm.
Technical Paper

Improving Flow Tolerances of Mass Produced Carburetors through Pilot System Design

2009-04-20
2009-01-1055
Carburetors are widely used for two wheeler applications in India as well as countries like Taiwan, Indonesia and China. These carburetors are characterized by simple design and low cost. As the emission norms are becoming more and more stringent, matching the carburetors for vehicle application becomes very challenging. Earlier it was widely believed that, for meeting the Euro-3 regulations, even two wheelers with small engine capacity had to employ electronic fuel injection. However, many vehicle manufacturers have successfully developed carburetors for meeting Euro-3 norms by employing catalytic converters without any electronic control. This development has been essentially motivated by the need for low cost. Flow variation is inherent in mass produced carburetors because there are many parts, which contribute to the air-fuel ratio delivered by the carburetor. Carburetors with the mixture control pilot systems were mass-produced and compared for results with air control system.
Journal Article

Model Based Control of SCR Dosing and OBD Strategies with Feedback from NH3 Sensors

2009-04-20
2009-01-0911
This paper presents a model-based control system for SCR urea dosing employing an embedded real-time SCR chemistry model and a NH3 sensor. The control algorithm consists of a number of control features designed to enhance ammonia storage control and closed-loop compensation using the mid-brick NH3 sensor. An adaptive control algorithm is developed to demonstrate robustness of the feedback control system to compensate for catalyst aging, urea injection malfunction, or dosing fluid concentration variation. Simulation and engine dynamometer testing following ESC and FTP emission cycles are used to demonstrate the advantages of this control approach for meeting both NOx emission requirements and NH3 slip targets. Furthermore this paper demonstrates potential of a NH3 sensor for on-board diagnostics. Additionally the feasibility of implementing model based algorithms in a 32-bit floating-point environment with an automotive controller is examined.
Technical Paper

Closed Loop Pressure Control System Development for an Automatic Transmission

2009-04-20
2009-01-0951
This paper presents the development of a transmission closed loop pressure control system. The objective of this system is to improve transmission pressure control accuracy by employing closed-loop technology. The control system design includes both feed forward and feedback control. The feed forward control algorithm continuously learns solenoid P-I characteristics. The closed loop feedback control has a conventional PID control with multi-level gain selections for each control channel, as well as different operating points. To further improve the system performance, Robust Optimization is carried out to determine the optimal set of control parameters and controller hardware design factors. The optimized design is verified via an L18 experiment on spin dynamometer. The design is also tested on vehicle.
Technical Paper

Torque Converter Clutch Control using H∞ Loop Shaping

2009-04-20
2009-01-0954
The development of a robust feedback slip controller for a torque converter clutch (TCC) is presented in this paper. The dynamic behavior of the TCC is modeled utilizing the principles of input-output system identification. An H∞ loop shaping controller design technique is applied in order to ensure robust stability against unmodeled system dynamics and large variations in system parameters. Road driving tests indicate that the control system achieves high levels of reliability and stability.
Journal Article

Development of a Slip Speed Control System for a Lockup Clutch (Part III)

2009-04-20
2009-01-0955
It is difficult for a conventional robust control algorithm to assure the performance of a slip speed control system, because the plant (lockup system) includes the nonlinear characteristics of the hydraulic system and large changes in the parameters of the slip model at low vehicle speed. The purpose of this study is to reduce the fuel consumption and improve the drivability of vehicles at takeoff by using a slip speed control system. Providing a large feedback gain is effective in reducing the influence of nonlinearity. However, since the operating parameters of the lockup clutch change depending on the driving conditions, that is not possible. A feedback compensator with a gain-scheduled H∞ control method was used in this study to solve these problems. The effectiveness of the slip speed control system was demonstrated in driving tests. Using this control system, the slip speed can be controlled with high accuracy, thereby reducing unnecessary revving of the engine.
Technical Paper

Effect of Biodiesel and its Blends on Particulate Emissions from HSDI Diesel Engine

2010-04-12
2010-01-0798
The effect of biodiesel on the Particulate emissions is gaining significant attention particularly with the drive for the use of alternative fuels. The particulate matter (PM), especially having a diameter less than 50 nm called the Nanoparticles or Nucleation mode particles (NMPs), has been raising concerns about its effect on human health. To better understand the effect of biodiesel and its blends on particulate emissions, steady state tests were conducted on a small-bore single-cylinder high-speed direct-injection research diesel engine. The engine was fueled with Ultra-Low Sulfur Diesel (ULSD or B-00), a blend of 20% soy-derived biodiesel and 80% ULSD on volumetric basis (B-20), B-40, B-60, B-80 and 100% soy-derived biodiesel (B-100), equipped with a common rail injection system, EGR and swirl control systems at a load of 5 bar IMEP and constant engine speed of 1500 rpm.
Technical Paper

Closed Loop Transaxle Synchronization Control Design

2010-04-12
2010-01-0817
This paper covers the development of a closed loop transaxle synchronization algorithm which was a key deliverable in the control system design for the L3 Enigma, a Battery Dominant Hybrid Electric Vehicle. Background information is provided to help the reader understand the history that lead to this unique solution of the input and output shaft synchronizing that typically takes place in a manual vehicle transmission or transaxle when shifting into a gear from another or into a gear from neutral when at speed. The algorithm stability is discussed as it applies to system stability and how stability impacts the speed at which a shift can take place. Results are simulated in The MathWorks Simulink programming environment and show how traction motor technology can be used to efficiently solve what is often a machine design issue. The vehicle test bed to which this research is applied is a parallel biodiesel hybrid electric vehicle called the Enigma.
Technical Paper

Control of Electric to Parallel Hybrid Drive Transition in a Dual-Drive Hybrid Powertrain

2010-04-12
2010-01-0819
Hybrid electric vehicle (HEV) powertrains have become key to developing environmentally friendly and fuel efficient vehicles. As such, companies are continually investing in developing new hybrid powertrain architectures. Ford Motor Company has developed a new “Dual-Drive” full hybrid electric vehicle that overcomes some attribute deficiencies of existing hybrid powertrain architectures due to the kinematic arrangement of the engine, motors and driveline components. This hybrid powertrain is comprised of conventional powertrain components as its base with an electric motor on the rear axle, and a crank integrated starter generator, engine and transmission on the front axle. It forms a complex configuration which provides fuel economy improvement over a conventional powertrain.
Technical Paper

General Motors Small Front Wheel Drive Six speed Automatic Transmission Family

2010-04-12
2010-01-0857
General Motors introduced a family of small front wheel drive six speed automatic transmissions for the 2008 model year. The family currently has two variants: 6T40 and 6T45, which cover a range of vehicles from small & compact cars to small SUVs and handle engines torque capacities up to 240 Nm Gas(280 Nm Diesel) & 315 Nm Gas (380 Nm Diesel) respectively. The 6T40/45 transmissions replace GM traditional four speed automatic wrap around transmissions 4T40/45. The wrap around transmissions have Torque Converter, Pump & Controls on the engine axis and the rest of the transmission content on the output axis. The 6T40/45 have an on-axis architecture with majority of the transmission content on the engine axis and final drive & differential on the output axis. The 4T40/45 have input chain transfer whereas the 6T40/45 have an output chain transfer.
Technical Paper

Computationally Fast Implementations of Convection, Diffusion and Chemical Reaction Phenomena in Diesel Particulate Filters

2010-04-12
2010-01-0890
In the present work we derive analytical solutions for the problem of convection, diffusion and chemical reaction in wall-flow monoliths. The advantage of having analytical instead of numerical treatments is clear as the analytical solutions not only can be exploited to bring full scale simulations of diesel particulate filters to the real time domain, but also they enable efficient implementations on computationally limited engine control units (ECUs) for on-board management and control of emission control systems. The presentation describes the mathematical problem formulation, the governing dimensionless parameters and the corresponding assumptions. Then the analytical solution is derived and several asymptotic (for limiting values of the parameters) and approximating solutions are developed, corresponding to different physical situations. Reactant distributions in the filter are presented and discussed for several values of the parameters.
Technical Paper

Levels of Modeling a Hybrid-Electric Vehicle: Simulation, SIL, Real-Time, and HIL

2010-04-12
2010-01-0943
Rose-Hulman Institute of Technology is one of 17 universities competing in EcoCAR: The NeXt Challenge, a three year international competition where teams are challenged to design, build, and test a hybrid vehicle architecture utilizing alternative fuels to reduce the energy consumption and emissions production of a 2009 production GM vehicle [ 1 ]. Teams are presently in year one of the competition where students choose an architecture, specify components, and design the vehicle. Design includes both the mechanical integration of the parts as well as design of the supervisory control system for the hybrid system. Year two of the competition is the build phase, and year three is the optimization and refinement phase. The design phase lasts approximately 9 months and most teams will completely replace the original powertrain with a hybrid powertrain.
Technical Paper

Modeling, Identification, and Separation of Crankshaft Dynamics in a Light-Duty Diesel Engine

2009-06-15
2009-01-1798
Mathematical models of a torque sensor equipped crankshaft in a light-duty diesel engine are identified, validated, and compared. The models are based on in-cylinder pressure and crankshaft torque data collected from a 5-cylinder common-rail diesel engine running at multiple operating points. The work is motivated by the need of a crankshaft model in a closed-loop combustion control system based on crankshaft torque measurements. In such a system a crankshaft model is used in order to separate the measured crankshaft torque into cylinder individual torque contributions. A method for this is described and used for IMEP estimation. Not surprisingly, the results indicate that higher order models are able to estimate crankshaft torque more accurately than lower order models, even if the differences are small. For IMEP estimation using the cylinder separation method however, these differences have large effects on accuracy.
Technical Paper

Robust Common-Rail Pressure Control for a Diesel-Dual-Fuel Engine Using QFT-Based Controller

2009-06-15
2009-01-1799
Despite promising future, the diesel-dual-fuel engine, with diesel as pilot and natural gas as main, abounds with challenges from high NOx emission and knock especially at high speed and low load. To cope with these challenges, variation of common-rail pressure provides another desirable degree of freedom. Nevertheless, crippling with complicated dynamics, pressure wave inside the transporting rail, disturbance from varying of injections, engine speed variation, and actuator limitation, common-rail pressure control has relied on the simple PID to deliver only marginally satisfactory result. Some attempts to achieve better control have resulted in either too complicated or not too robust control system. We devise a controller from the quantitative feedback theory.
Technical Paper

Lubrication Technology and Analysis for Variable Valve Event and Lift (VVEL) System

2009-06-15
2009-01-1837
A new Variable Valve Event and Lift (VVEL) system has been developed as an effective technology for reconciling environmental performance such as lowering the fuel consumption and exhaust emissions with driving performance. This system can continuously vary both the intake valve lift and event angle (valve opening duration) over a wide operating range to flexibly control the valve timing and lift for a substantial improvement in engine performance. In developing the variable valve lift control system, the essential merit is based on the fundmental configuration of multiple-link mechanism. However, it is required to resolve tribological issues for the specific mechnism. This paper describes the structure of the VVEL system and its operating and motion conversion principles. It also explains the mechanism analysis, dynamic stress analysis and lubrication simulation techniques used in developing the VVEL system, the materials adopted and the surface treatment techniques applied.
Technical Paper

New Exhaust Catalyst Emission Control Systems for Nonroad SI Class I Engines

2009-06-15
2009-01-1900
The U.S. Environmental Protection Agency has completed a program to demonstrate the feasibility of using integrated catalyst-muffler exhaust systems for nonroad spark ignition gasoline Class I engines (sub-19 kW, less than 225 cc). Integrated catalyst-muffler systems were developed for 4 different Class I engine families. Passive secondary air-injection systems were used with most of the systems to provide an exhaust feed-gas composition that was slightly rich of stoichiometry when used in conjunction with unmodified “Phase 2” carburetor A/F ratio calibrations. Catalyst sizing, PGM loading, and secondary-air venturi design were selected to limit CO oxidation and the typically resultant high heat rejection at high load operating points while still providing good NOx and HC emission control. Infrared thermal imaging was used to assess heat rejection at the EPA A-cycle operational points and during simulated hot soaks for selected configurations.
Technical Paper

Weight and Dimensional Parameters of a Power Drive for Electrical Vehicle

2009-06-15
2009-01-1886
The electric drive with the synchronous electrical machine of independent excitation differs by high specific parameters, adaptability to manufacture, simplicity of a design, and reliability. These properties of the electric drive allow using it in heavy conditions of operation. In particular, it can be recommended to use in electrical vehicles. The electric motor for this electric drive can be executed with two separate stator windings. Therefore, there are additional benefits connected to an opportunity of change of geometry of an iron stator stamp of the given type motor. In this report, the principle of operation of the electric drive with control system is considered. The different variants of a stator design of the electrical machine are discussed. The stator design allows improve of the mass and weight parameters of the electric machine. For the offered stator designs, the comparison of specific parameters (relationship of the nominal torque to load current) is carried out.
X