Refine Your Search




Search Results

Training / Education

Introduction to Commercial and Off-Road Vehicle Cooling Airflow Systems

Vehicle functional requirements, emission regulations, and thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Given the expected increase in emission-related heat rejection, suppliers and vehicle manufacturers must work together as partners in the design, selection, and packaging of cooling system components. An understanding and appreciation of airflow integration issues and vehicle-level trade-offs that effect system performance are important to the team effort. The severe duty cycles, minimal ram air, and sometimes unconventional package layouts present unique challenges.
Training / Education

The Principles and Applications of Powertrain Controls for the New Energy Vehicles

课程概述 Powertrain controls for NEVs is one of the most complex and highly confidential areas of NEV research and development. This two-day course takes the seemingly complicated field of NEV powertrain controls and summarizes it into a few basic principles. The latest and most popular NEV powertrains are also reviewed to illustrate these principles and the controls strategies used. 对于新能源汽车来说,动力总成控制一直以来都是最复杂的和高度机密的领域之一。在这两天的课程中,我们将把看似复杂的动力总成控制系统总结出几条基本规则,同时,通过对当今其他车型动力控制系统的案例分析,来把这些规则和原理进行融会贯通。

Neural Network-based Optimal Control for Advanced Vehicular Thermal Management Systems

Advanced vehicular thermal management system can improve engine performance, minimize fuel consumption, and reduce emissions by harmoniously operating computer-controlled servomotor components. In this paper, a neural network-based optimal control strategy is proposed to regulate the engine temperature through the advanced cooling system. Presenter Asma Al Tamimi, Hashemite University

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

Today CFD is an important tool for engineers in the automotive industry who model and simulate fluid flow. For the complex field of Underhood Thermal Management, CFD has become a very important tool to engineer the cooling airflow process in the engine bay of vehicles. Presenter Peter Gullberg, Chalmers University of Technology

New Particulate Matter Sensor for On Board Diagnosis

The presentation describes technology developments and the integration of these technologies into new emission control systems. As in other years, the reader will find a wide range of topics from various parts of the world. This is reflective of the worldwide scope and effort to reduce diesel exhaust emissions. Topics include the integration of various diesel particulate matter (PM) and Nitrogen Oxide (NOx) technologies as well as sensors and other emissions related developments. Presenter Atsuo Kondo, NGK Insulators, Ltd.

The Correlation of As-Manufactured Products to As-Designed Specifications: Closing the Loop on Dimensional Quality Results to Engineering Predictions

Simulation-based tolerance analysis is the accepted standard for dimensional engineering in aerospace today. Sophisticated 3D model-based tolerance analysis processes enable engineers to measure variation in complex, often large, assembled products quickly and accurately. Best-in-class manufacturers have adopted Quality Intelligence Management tools for collecting and consolidating this measurement data. Their goal is to completely understand dimensional fit characteristics and quality status before commencing the build process. This results in shorter launch cycles, improved process capabilities, reduced scrap and less production downtime. This paper describes how to use simulation-based approaches to correlate the theoretical tolerance analysis results produced during engineering simulations to actual as-built results. This allows engineers to validate or adjust as-designed simulation parameters to more closely align to production process capabilities.

On-Road Evaluation of an Integrated SCR and Continuously Regenerating Trap Exhaust System

Four-way, integrated, diesel emission control systems that combine selective catalytic reduction for NOx control with a continuously regenerating trap to remove diesel particulate matter were evaluated under real-world, on-road conditions. Tests were conducted using a semi-tractor with an emissions year 2000, 6-cylinder, 12 L, Volvo engine rated at 287 kW at 1800 rpm and 1964 N-m. The emission control system was certified for retrofit application on-highway trucks, model years 1994 through 2002, with 4-stroke, 186-373 kW (250-500 hp) heavy-duty diesel engines without exhaust gas recirculation. The evaluations were unique because the mobile laboratory platform enabled evaluation under real-world exhaust plume dilution conditions as opposed to laboratory dilution conditions. Real-time plume measurements for NOx, particle number concentration and size distribution were made and emission control performance was evaluated on-road.

GreenZone Driving for Plug In Hybrid Electric Vehicles

Plugin Hybrid Electric Vehicles (PHEV) have a large battery which can be used for electric only powertrain operation. The control system in a PHEV must decide how to spend the energy stored in the battery. In this paper, we will present a prototype implementation of a PHEV control system which saves energy for electric operation in pre-defined geographic areas, so called Green Zones. The approach determines where the driver will be going and then compares the route to a database of predefined Green Zones. The control system then reserves enough energy to be able to drive the Green Zone sections in electric only mode. Finally, the powertrain operation is modified once the vehicle enters the Green Zone to ensure engine operation is limited. Data will be presented from a prototype implementation in a Ford Escape PHEV Presenter Johannes Kristinsson

High Speed Machining of CFRP Parts

High Speed Machining of CFRP Parts Investigation of the influence of new geometries, cutting datas and coolant capabilities on the surface finish of CFRP parts. State of the art: Different CFRP grades and machining conditions make geometry adjustments to the tool necessary. Mechanical failures through machining operations can be avoided in most of the cases. New unidirectional CFRP grades and dry machining processes again lead to machining problems. This study investigates new geometries to avoid heat damage with dry maching and air coolant in case of unidirectional CFRP. With help of a thermo camera and the surface investigation with a scanning electron microscope, heat damage can be analysed and therefore new geometries can be developed and tested. Target is to develop a new multi purpose CFRP geometry to meet the requirements of the future. The reduction of different geometries used leads to major cost savings. Presenter Ingo von Puttkamer, Guhring oHG
Training / Education

Introduction to Cooling Airflow Systems Web Seminar RePlay

Vehicle functional requirements, diesel emission regulations, and subsystem thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Severe duty cycles, minimal ram air, fouling, and sometimes unconventional package layouts present unique challenges to the designer. This course introduces many airflow integration issues and vehicle-level trade-offs that effect system performance and drive the design. The goal of this course is to introduce engineers and managers to the basic principles of diesel cooling airflow systems for commercial and off-road vehicles.
Technical Paper

Installation Effects on the Flow Generated Noise From Automotive Electrical Cooling Fans

With the electrification of road vehicles comes new demands on the cooling system. Not the least when it comes to noise. Less masking from the driveline and new features, as for example, cooling when charging the batteries drives the need for silent cooling fans. In this work a novel e-fan is studied in different generalized installations and operating conditions. The fans (a cluster configuration) are installed in a test rig where the operation could be controlled varying the speed, flow rate and pressure difference over the fan. On the vehicle side of the fan a generalized packaging space (similar to an engine bay for conventional vehicles) is placed. In this packaging space different obstruction can be placed to simulate the components and radiators used in the vehicle. Here generalized simple blocks in different configuration are used to provide well defined and distinct test cases.
Technical Paper

Numerical Investigation of Narrow-Band Noise Generation by Automotive Cooling Fans

Axial cooling fans are commonly used in electric vehicles to cool batteries with high heating load. One drawback of the cooling fans is the high aeroacoustic noise level resulting from the fan blades and the obstacles facing the airflow. To create a comfortable cabin environment in the vehicle, and to reduce exterior noise emission, a low-noise installation design of the axial fan is required. The purpose of the project is to develop an efficient computational aeroacoustics (CAA) simulation process to assist the cooling-fan installation design. This paper reports the current progress of the development, where the narrow-band components of the fan noise is focused on. Two methods are used to compute the noise source. In the first method the source is computed from the flow field obtained using the unsteady Reynolds-averaged Navier-Stokes equations (unsteady RANS, or URANS) model.
Technical Paper

Concept Study on Windshield Actuation for Active Control of Wind Noise in a Passenger Car

The windshield is an integral part of almost every modern passenger car. Combined with current developments in the automotive industry such as electrification and the integration of lightweight material systems, the reduction of interior noise caused by stochastic and transient wind excitation is deemed to be an increasing challenge for future NVH measures. Active control systems have proven to be a viable alternative compared to traditional passive NVH measures in different areas. However, for windshield actuation there are neither comparative studies nor actually established actuation concepts available to the automotive industry. Based upon a numerical simulation of an installed windshield of a medium-sized car, this paper illustrates a conceptual study of both the evaluation of optimal positioning as well as a consideration of different electromechanical activation measures.
Technical Paper

Development, System Integration and Experimental Investigation of an Active HVAC Noise Control System for a Passenger Car

Current developments in the automotive industry such as electrification and consistent lightweight construction increasingly enable the application of active control systems for the further reduction of noise in vehicles. As different stochastic noise sources such as rolling and wind noise as well as noise radiated by the ventilation system are becoming more noticeable and as passive measures for NVH optimization tend to be heavy and construction space intensive, current research activities focus on the active reduction of noise caused by the latter mentioned sources. This paper illustrates the development, implementation and experimental investigation of an active noise control system integrated into the ventilation duct system of a passenger car.
Technical Paper

Enhancement of Occupant Ride Comfort by GA Optimized PID Control Active Suspension System

The main objective of this work is to enhance the occupant ride comfort. Ride comfort is quantified in terms of measuring distinct accelerations like sprung mass, seat and occupant head. For this theoretical evaluation, a 7- degrees of freedom (DOF) human-vehicle-road model was established and the system investigation was limited to vertical motion. Besides, this work also focused to guarantee other vehicle performance indices like suspension working space and tire deflection. A proportional-integral-derivative (PID) controller was introduced in the vehicle model and optimized with the aid of the genetic algorithm (GA). Actuator dynamics is incorporated into the system. The objective function for PID optimization was carried out using root mean square error (RMSE) concept.
Technical Paper

Reinforcement of Low-Frequency Sound by Using a Panel Speaker Attached to the Roof Panel of a Passenger Car

The woofer in a car should be large to cover the low frequencies, so it is heavy and needs an ample space to be installed in a passenger car. The geometry of the woofer should conform to the limited available space and layout in general. In many cases, the passengers feel that the low-frequency contents are not satisfactory although the speaker specification covers the low frequencies. In this work, a thin panel is installed between the roof liner and the roof panel, and it is used as the woofer. The vibration field is controlled by many small actuators to create the speaker and baffle zones to avoid the sound distortion due to the modal interaction. The generation of speaker and baffle zones follows the inverse vibro-acoustic rendering technique. In the actual implementation, a thin acrylic plate of 0.53ⅹ0.2 m2 is used as the radiator panel, and the control actuator array is composed of 16 moving-coil actuators.

Principles of Engine Cooling Systems, Components and Maintenance

Completely revised as a result of the significant progress made in cooling system design and maintenance practices and procedures, HS-40 provides current, comprehensive information on the description, function, and maintenance of engine liquid-cooling systems used in light and heavy-duty vehicles. Information-packed chapters discuss the interrelation between the cooling system and other engine systems, cooling system components, general preventive maintenance, and troubleshooting.

Automotive Microcontrollers, Volume 2

This book contains 49 papers covering the past eight years (2000-2007) of research on automotive microcontrollers, providing a look at innovative design trends and the latest applications. Topics covered include: Microcontroller Design Concepts; Microcontroller Networking; System Testing/Diagnosis; Implementation Examples The book also includes editor Ronald K. Jurgen's introduction ("New Microcontroller Architectures Spark Innovative Applications") and a concluding section on future developments in automotive microcontrollers.
Technical Paper

The deLavaud Automatic Transmission

MENTIONING the various attempts that have been made to secure continuous progressive changes of gear in the automobile, the author states that nothing of this sort is of value unless it is automatic. He has designed a transmission consisting of a wabble-plate which actuates six connecting-rods that operate as many roller clutches on the rear axle. Changes in speed result from varying the inclination of the wabble-plate, and this is controlled automatically through the combined effects of inertia and the reaction of resistance. This transmission has been applied to a number of cars of different weights, some of which have seen much service. The action of the various elements of the transmission is analyzed with the aid of drawings, diagrams and formulas, and the proportions that have been found most successful are stated. This transmission is combined with a gearless differential and a planetary reverse-gear.