Refine Your Search

Search Results

Standard

Aluminum Alloys - Fundamentals

2018-01-10
CURRENT
J451_201801
This information report is intended to give general data on the properties of aluminum and information on working, joining, forming, machining, finishing, and heat treating of aluminum.
Standard

ALUMINUM ALLOYS - FUNDAMENTALS

1989-01-01
HISTORICAL
J451_198901
This information report is intended to give general data on the properties of aluminum and information on working, joining, forming, machining, finishing, and heat treating of aluminum.
Standard

ZINC ALLOY INGOT AND DIE CASTING COMPOSITIONS

1988-12-01
HISTORICAL
J468_198812
SIMILAR SPECIFICATIONS—UNS Z33521, former SAE 903, ingot is similar to ASTM B 240-79, Alloy AG40A; and UNS Z33520, former SAE 903, die casting is similar to ASTM B 86-76, Alloy AG40A. UNS Z35530, former SAE 925, ingot is similar to ASTM B 240-79, Alloy AC41A; and UNS Z35531, former SAE 925, die casting is similar to ASTM B 86-82a, Alloy AC41A.
Standard

Magnesium Wrought Alloys

2018-01-09
CURRENT
J466_201801
This SAE Standard covers the most common magnesium alloys used in wrought forms, and lists chemical composition and minimum mechanical properties for the various forms. A general indication of the usage of the various materials is also provided.
Standard

MAGNESIUM WROUGHT ALLOYS

1989-12-01
HISTORICAL
J466_198912
This SAE Standard covers the most common magnesium alloys used in wrought forms, and lists chemical composition and minimum mechanical properties for the various forms. A general indication of the usage of the various materials is also provided.
Standard

MAGNESIUM CASTING ALLOYS

1989-01-01
HISTORICAL
J465_198901
This document has not changed other than to put it into the new SAE Technical Standards Board Format This SAE Standard covers the most commonly used magnesium alloys suitable for casting by the various commercial processes. The chemical composition limits and minimum mechanical properties are shown. Over the years, magnesium alloys have been identified by many numbering systems, as shown in Table 1. Presently, SAE is recommending the use of the use of the UNS numbering system to identify those materials. Other equally important characteristics such as surface finish and dimensional tolerances are not covered in this standard.
Standard

Magnesium Casting Alloys

2018-01-09
CURRENT
J465_201801
This document has not changed other than to put it into the new SAE Technical Standards Board Format This SAE Standard covers the most commonly used magnesium alloys suitable for casting by the various commercial processes. The chemical composition limits and minimum mechanical properties are shown. Over the years, magnesium alloys have been identified by many numbering systems, as shown in Table 1. Presently, SAE is recommending the use of the use of the UNS numbering system to identify those materials. Other equally important characteristics such as surface finish and dimensional tolerances are not covered in this standard.
Standard

Zinc Alloy Ingot and Die Casting Compositions

2018-01-09
CURRENT
J468_201801
SIMILAR SPECIFICATIONS—UNS Z33521, former SAE 903, ingot is similar to ASTM B 240-79, Alloy AG40A; and UNS Z33520, former SAE 903, die casting is similar to ASTM B 86-76, Alloy AG40A. UNS Z35530, former SAE 925, ingot is similar to ASTM B 240-79, Alloy AC41A; and UNS Z35531, former SAE 925, die casting is similar to ASTM B 86-82a, Alloy AC41A.
Standard

High Temperature Materials for Exhaust Manifolds

1999-08-01
HISTORICAL
J2515_199908
A subcommittee within SAE ISTC Division 35 has written this report to provide automotive engineers and designers a basic understanding of the design considerations and high temperature material availability for exhaust manifold use. It is hoped that it will constitute a concise reference of the important characteristics of selected cast and wrought ferrous materials available for this application, as well as methods employed for manufacturing. The different types of manifolds used in current engine designs are discussed, along with their range of applicability. Finally, a general description of mechanical, chemical, and thermophysical properties of commonly-used alloys is provided, along with discussions on the importance of such properties.
Standard

High Temperature Materials for Exhaust Manifolds

2017-12-20
CURRENT
J2515_201712
A subcommittee within SAE ISTC Division 35 has written this report to provide automotive engineers and designers a basic understanding of the design considerations and high temperature material availability for exhaust manifold use. It is hoped that it will constitute a concise reference of the important characteristics of selected cast and wrought ferrous materials available for this application, as well as methods employed for manufacturing. The different types of manifolds used in current engine designs are discussed, along with their range of applicability. Finally, a general description of mechanical, chemical, and thermophysical properties of commonly-used alloys is provided, along with discussions on the importance of such properties.
Standard

Abrasive Wear

2018-01-09
CURRENT
J965_201801
An enormous economic loss, as well as a waste of natural resources, is incurred world-wide as a result of wear of components and tools. Any effort expended in an attempt to reduce this loss is indeed worthwhile. The purpose of this SAE Information Report is to present the current state of knowledge of abrasive wear. This report, therefore, covers wear, or the undesired removal of metal by mechanical action, caused by abrasive particles in contact with the surface. It does not concern metal-to-metal wear or wear in the presence of an abrasive free lubricant. Abrasive wear occurs when hard particles, such as rocks, sand, or fragments of certain hard metals, slide or roll under pressure across a surface. This action tends to cut grooves across the metal surface, much like a cutting tool. Abrasive wear is of considerable importance in any part moving in relation to an abrasive.
Standard

ABRASIVE WEAR

1966-08-01
HISTORICAL
J965_196608
An enormous economic loss, as well as a waste of natural resources, is incurred world-wide as a result of wear of components and tools. Any effort expended in an attempt to reduce this loss is indeed worthwhile. The purpose of this SAE Information Report is to present the current state of knowledge of abrasive wear. This report, therefore, covers wear, or the undesired removal of metal by mechanical action, caused by abrasive particles in contact with the surface. It does not concern metal-to-metal wear or wear in the presence of an abrasive free lubricant. Abrasive wear occurs when hard particles, such as rocks, sand, or fragments of certain hard metals, slide or roll under pressure across a surface. This action tends to cut grooves across the metal surface, much like a cutting tool. Abrasive wear is of considerable importance in any part moving in relation to an abrasive.
Standard

Alloy and Temper Designation Systems for Aluminum

2018-01-09
CURRENT
J993_201801
This standard provides systems for designating wrought aluminum and wrought aluminum alloys, aluminum and aluminum alloys in the form of castings and foundry ingot, and the tempers in which aluminum and aluminum alloy wrought products and aluminum alloy castings are produced.
Standard

ALLOY AND TEMPER DESIGNATION SYSTEMS FOR ALUMINUM

1989-01-01
HISTORICAL
J993_198901
This standard provides systems for designating wrought aluminum and wrought aluminum alloys, aluminum and aluminum alloys in the form of castings and foundry ingot, and the tempers in which aluminum and aluminum alloy wrought products and aluminum alloy castings are produced.
Standard

ELEVATED TEMPERATURE PROPERTIES OF CAST IRONS

1988-05-01
HISTORICAL
J125_198805
The purpose of this SAE Information Report is to provide automotive engineers and designers with a concise statement of the basic characteristics of cast iron under elevated temperature conditions. As such, the report concentrates on general statements regarding these properties with limited illustrative data, anticipating that those who may be interested in more detail will want to use the bibliography provided at the conclusion of the report.
Standard

Elevated Temperature Properties of Cast Irons

2018-01-09
CURRENT
J125_201801
The purpose of this SAE Information Report is to provide automotive engineers and designers with a concise statement of the basic characteristics of cast iron under elevated temperature conditions. As such, the report concentrates on general statements regarding these properties with limited illustrative data, anticipating that those who may be interested in more detail will want to use the bibliography provided at the conclusion of the report.
Standard

Valve Seat Insert Information Report

2017-12-20
CURRENT
J1692_201712
This SAE Information Report provides engineers and designers with: a Types of valve seat inserts and their nomenclature b Valve seat insert alloy designations and their chemistries c Valve seat insert alloy metallurgy d Typical mechanical and physical properties of insert alloys e Recommended interference fits f Installation procedures g Application considerations
Standard

VALVE SEAT INSERT INFORMATION REPORT

1993-08-01
HISTORICAL
J1692_199308
This SAE Information Report provides engineers and designers with: a Types of valve seat inserts and their nomenclature b Valve seat insert alloy designations and their chemistries c Valve seat insert alloy metallurgy d Typical mechanical and physical properties of insert alloys e Recommended interference fits f Installation procedures g Application considerations
Standard

Zinc Die Casting Alloys

2017-12-20
CURRENT
J469_201712
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
Standard

ZINC DIE CASTING ALLOYS

1989-01-01
HISTORICAL
J469_198901
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
X