Refine Your Search

Search Results

Viewing 1 to 12 of 12
Standard

Use of Terms Yield Strength and Yield Point

2002-02-27
HISTORICAL
J450_200202
The purpose of this SAE Recommended Practice is to describe the terms yield strength and yield point. Included are definitions for both terms and recommendations for their use and application.
Standard

High-Strength Carbon and Alloy Die Drawn Steels

2009-11-24
CURRENT
J935_200911
This SAE Recommended Practice is intended to provide basic information on properties and characteristics of high-strength carbon and alloy steels which have been subjected to special die drawing. This includes both cold drawing with heavier-than-normal drafts and die drawing at elevated temperatures.
Standard

Former SAE Standard and Former SAE Ex-Steels

2008-12-02
CURRENT
J1249_200812
This SAE Information Report provides a list of those SAE steels which, because of decreased usage, have been deleted from the standard SAE Handbook listings. Included are alloy steels from SAE J778 deleted since 1936, carbon steels from SAE J118 deleted since 1952, and all EX-steels deleted from SAE J1081. Information concerning SAE steels prior to these dates may be obtained from the SAE office on request. With the issuance of this report, SAE J778, Formerly Standard SAE Alloy Steels, and SAE J118, Formerly Standard SAE Carbon Steels, will be retired since they are now combined in SAE J1249. In the future, new assignments to SAE J1081, Chemical Compositions of SAE Experimental Steels, will be given “PS” (Potential Standard) numbers rather than “EX” numbers. The steels listed in Tables 1 and 2 are no longer considered as standard steels. Producers should be contacted concerning availability.
Standard

High-Strength, Hot-Rolled Steel Bars

2003-09-24
CURRENT
J1442_200309
This SAE Recommended Practice covers two levels of high strength structural low-alloy steel bars having minimum Yield Points of 345 MPa (50 ksi) and 450 MPa (65 ksi). The two strength levels are 345 and 450 MPa or 50 and 65 ksi minimum yield point. Different chemical compositions are used to achieve the specified mechanical properties. In some cases there are significant differences in chemical composition for the same strength level, depending on the fabricating requirements. It should be noted that although the mechanical properties for a steel grade sourced from different suppliers may be the same, the chemical composition may vary significantly. The fabricator should be aware that certain compositional differences may effect the forming, welding, and/or service requirements of the material. It is therefore recommended that the fabricator consult with the producer to understand the effect of chemical composition.
Standard

Restricted Hardenability Bands for Selected Alloy Steels

2010-02-15
CURRENT
J1868_201002
Restricted hardenability steels have been in use for some time but the specific restrictions for a particular grade depend upon customer needs and vary from mill to mill. Such steels are desirable to provide more controlled heat treatment response and dimensional control for critical parts. Because of increasing interest in steels with restricted hardenability, the SAE Iron and Steel Technical Committee directed Division 8 to prepare a set of standard steels with restricted hardenability. In 1993, the American Society for Testing and Materials (ASTM) adopted the twelve SAE restricted hardenability steels and added ten more. SAE decided to include in SAE J1868 the additional 10 steels. In general, steels with restricted hardenability (RH steels) will exhibit a hardness range not greater than 5 HRC at the initial position on the end-quench hardenability bar and not greater than 65% of the hardness range for standard H-band steels (see SAE J1268) in the "inflection" region.
Standard

Selection and Use of Steels

2012-03-12
CURRENT
J401_201203
The SAE system of designating steels, described in SAE J402, classifies and numbers them according to chemical composition. In the case of the dent resistant, high strength and ultra high strength steels in SAE J2340, advanced high strength steels described in SAE J2745, and the high strength steels in SAE J1442 and the high-strength carbon and alloy die drawn steels in SAE J935, minimum mechanical property requirements have been included in the designations. In addition, hardenability data on most of the alloy steels and some of the carbon steels will be found in SAE J1268.
Standard

Chemical Compositions of SAE Carbon Steels

2009-12-07
HISTORICAL
J403_200912
In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry. It was recognized that production of fewer grades of steel could result in improved deliveries and provide a better opportunity to achieve advances in technology, manufacturing practices, and quality, and thus develop more fully the possibilities of application inherent in those grades.
Standard

Chemical Compositions of SAE Carbon Steels

2014-06-30
CURRENT
J403_201406
In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry. It was recognized that production of fewer grades of steel could result in improved deliveries and provide a better opportunity to achieve advances in technology, manufacturing practices, and quality, and thus develop more fully the possibilities of application inherent in those grades.
Standard

ESTIMATED MECHANICAL PROPERTIES AND MACHINABILITY OF STEEL BARS

1992-05-01
CURRENT
J1397_199205
This SAE Information Report is intended to provide a guide to mechanical and machinability characteristics of some SAE steel grades. The ratings and properties shown are provided as general information and not as requirements for specifications unless each instance is approved by the source of supply. The data are based on resources which may no longer be totally accurate. However, this report is retained as a service in lieu of current data.
Standard

Chemical Compositions of SAE Alloy Steels

2009-01-27
CURRENT
J404_200901
In 1941, the SAE Iron and Steel Division in collaboration with the American Iron and Steel Institute (AISI) made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower ladle analysis ranges plus certain product (check) analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels (reference SAE J408). ISTC Division 1 has developed a procedure which allows for the maintenance of the grade list in this SAE Standard. This will involve conducting an industry-wide survey to solicit input. This survey will be conducted at a frequency deemed necessary by the technical committee. Criteria have been established for the addition to or deletion of grades from the grade table.
Standard

Methods of Determining Hardenability of Steels

2009-03-27
CURRENT
J406_200903
This SAE Standard prescribes the procedure for making hardenability tests and recording results on shallow and medium hardening steels, but not deep hardening steels that will normally air harden. Included are procedures using the 25 mm (1 in) standard hardenability end-quench specimen for both medium and shallow hardening steels and subsize method for bars less than 32 mm (1-1/4 in) in diameter. Methods for determining case hardenability of carburized steels are given in SAE J1975. Any hardenability test made under other conditions than those given in this document will not be deemed standard and will be subject to agreement between supplier and user. Whenever check tests are made, all laboratories concerned must arrange to use the same alternate procedure with reference to test specimen and method of grinding for hardness testing.
Standard

PRODUCT ANALYSIS—PERMISSIBLE VARIATIONS FROM SPECIFIED CHEMICAL ANALYSIS OF A HEAT OR CAST OF STEEL

1995-02-01
CURRENT
J409_199502
Supplementary to the heat or cast analysis, a product analysis may be made on steel in the semifinished or finished form. For definitions and methods of sampling steel for product chemical analysis, refer to SAE J408. A product analysis is a chemical analysis of the semifinished or finished steel to determine conformance to the specification requirements. The range of the specified chemical composition is normally expanded to take into account deviations associated with analytical reproducibility and the heterogeneity of the steel. Individual determinations may vary from the specified heat or cast analysis ranges or limits to the extent shown in Tables 1 through 5. The several determinations of any element in a heat or cast may not vary both above and below the specified range except for lead. Tables 1 through 5 provide permissible limits for various steel forms and composition types.
X