Refine Your Search

Search Results

Viewing 1 to 11 of 11
Standard

SPECIAL PURPOSE ALLOYS ("SUPERALLOYS")

1968-10-01
HISTORICAL
J467B_196810
The data given in Tables 1–4 are typical values only and are not intended for design parameters. Mechanical properties of the special purpose alloys depend greatly upon processing variables and heat treatment. It is recommended that design data be obtained by actual testing or by consultation with the producers of the alloys.
Standard

Special Purpose Alloys ("Superalloys")

2018-02-15
CURRENT
J467B_201802
The data given in Tables 1–4 are typical values only and are not intended for design parameters. Mechanical properties of the special purpose alloys depend greatly upon processing variables and heat treatment. It is recommended that design data be obtained by actual testing or by consultation with the producers of the alloys.
Standard

DETECTION OF SURFACE IMPERFECTIONS IN FERROUS RODS, BARS, TUBES, AND WIRES

1991-02-01
HISTORICAL
J349_199102
This SAE Information Report provides a summary of several methods that are available for detecting, and in some instances detecting and measuring, surface imperfections in rods, bars, tubes, and wires. References relating to detailed technical information and to specific applications are enumerated in 2.2.
Standard

ELEVATED TEMPERATURE PROPERTIES OF CAST IRONS

1988-05-01
HISTORICAL
J125_198805
The purpose of this SAE Information Report is to provide automotive engineers and designers with a concise statement of the basic characteristics of cast iron under elevated temperature conditions. As such, the report concentrates on general statements regarding these properties with limited illustrative data, anticipating that those who may be interested in more detail will want to use the bibliography provided at the conclusion of the report.
Standard

Elevated Temperature Properties of Cast Irons

2018-01-09
CURRENT
J125_201801
The purpose of this SAE Information Report is to provide automotive engineers and designers with a concise statement of the basic characteristics of cast iron under elevated temperature conditions. As such, the report concentrates on general statements regarding these properties with limited illustrative data, anticipating that those who may be interested in more detail will want to use the bibliography provided at the conclusion of the report.
Standard

Leakage Testing

2018-01-10
CURRENT
J1267_201801
This information report provides basic information on leakage testing, as applied to nondestructive testing, and affords the user sufficient information so that he may decide whether leakage testing methods apply to his particular need. Detailed references are listed in Section 2.
Standard

LEAKAGE TESTING

1988-12-01
HISTORICAL
J1267_198812
This information report provides basic information on leakage testing, as applied to nondestructive testing, and affords the user sufficient information so that he may decide whether leakage testing methods apply to his particular need. Detailed references are listed in Section 2.
Standard

VALVE GUIDE INFORMATION REPORT

1993-09-10
HISTORICAL
J1682_199309
This SAE Information Report provides: a Types of valve guides and their nomenclature b Valve guide alloy designations and their chemistries c Valve guide alloy metallurgy d Typical mechanical and physical properties of guide alloys e Typical dimensional tolerances of valve guides and their counterbores f Recommended interference fits g Installation procedures h Application considerations
Standard

Zinc Die Casting Alloys

2017-12-20
CURRENT
J469_201712
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
Standard

ZINC DIE CASTING ALLOYS

1989-01-01
HISTORICAL
J469_198901
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
Standard

GENERAL DATA ON WROUGHT ALUMINUM ALLOYS

1991-02-01
HISTORICAL
J454_199102
The SAE Standards for wrought aluminum alloys cover materials with a considerable range of properties and other characteristics, but do not include all of the commercially available materials. If none of the materials listed in Tables 1 through 7 provides the characteristics required by a particular application, users may find it helpful to consult with the suppliers of aluminum alloy products. See companion document, SAE J1434.
X