Refine Your Search

Search Results

Viewing 1 to 16 of 16
Standard

AUTOMOTIVE METALLURGICAL JOINING

1970-10-01
HISTORICAL
J836_197010
This report is an abbreviated summary of metallurgical joining by welding, brazing, and soldering. It is generally intended to reflect current usage in the automotive industry; however, it does include some of the more recently developed processes. More comprehensive coverage of materials, processing details, and equipment required may be found in the Welding Handbook, Soldering Manual, and other publications of the American Welding Society and the American Society for Testing and Materials. AWS Automotive Welding Committee publications on Recommended Practices are particularly recommended for the design or product engineer. This report is not intended to cover mechanical joining such as rivets or screw fasteners, or chemical joining processes such as adhesive joining.
Standard

Magnesium Wrought Alloys

2018-01-09
CURRENT
J466_201801
This SAE Standard covers the most common magnesium alloys used in wrought forms, and lists chemical composition and minimum mechanical properties for the various forms. A general indication of the usage of the various materials is also provided.
Standard

MAGNESIUM WROUGHT ALLOYS

1989-12-01
HISTORICAL
J466_198912
This SAE Standard covers the most common magnesium alloys used in wrought forms, and lists chemical composition and minimum mechanical properties for the various forms. A general indication of the usage of the various materials is also provided.
Standard

Magnesium Casting Alloys

2018-01-09
CURRENT
J465_201801
This document has not changed other than to put it into the new SAE Technical Standards Board Format This SAE Standard covers the most commonly used magnesium alloys suitable for casting by the various commercial processes. The chemical composition limits and minimum mechanical properties are shown. Over the years, magnesium alloys have been identified by many numbering systems, as shown in Table 1. Presently, SAE is recommending the use of the use of the UNS numbering system to identify those materials. Other equally important characteristics such as surface finish and dimensional tolerances are not covered in this standard.
Standard

Sintered Powder Metal Parts: Ferrous

2018-08-24
CURRENT
J471_201808
Powder metal (P/M) parts are manufactured by pressing metal powders to the required shape in a precision die and sintering to produce metallurgical bonds between the particles, thus generating the appropriate mechanical properties. The shape and mechanical properties of the part may be subsequently modified by repressing or by conventional methods such. as machining and/or heat treating. While powder metallurgy embraces a number of fields wherein metal powders may be used as raw materials, this standard is concerned primarily with information relating to mechanical components and bearings produced from iron-base materials.
Standard

SINTERED POWDER METAL PARTS: FERROUS

1973-08-01
HISTORICAL
J471_197308
Powder metal (P/M) parts are manufactured by pressing metal powders to the required shape in a precision die and sintering to produce metallurgical bonds between the particles, thus generating the appropriate mechanical properties. The shape and mechanical properties of the part may be subsequently modified by repressing or by conventional methods such. as machining and/or heat treating. While powder metallurgy embraces a number of fields wherein metal powders may be used as raw materials, this standard is concerned primarily with information relating to mechanical components and bearings produced from iron-base materials.
Standard

Liquid Penetrant Test Methods

2018-01-09
CURRENT
J426_201801
The scope of this SAE Information Report is to supply the user with sufficient information so that he may decide whether liquid penetrant test methods apply to his particular inspection problem. Detailed technical information can be obtained by referring to Section 2.
Standard

LIQUID PENETRANT TEST METHODS

1991-03-01
HISTORICAL
J426_199103
The scope of this SAE Information Report is to supply the user with sufficient information so that he may decide whether liquid penetrant test methods apply to his particular inspection problem. Detailed technical information can be obtained by referring to Section 2.
Standard

Wrought Aluminum Applications Guidelines

2018-01-10
CURRENT
J1434_201801
This report approaches the material selection process from the designer's viewpoint. Information is presented in a format designed to guide the user through a series of decision-making steps. "Applications criteria" along with engineering and manufacturing data are emphasized to enable the merits of aluminum for specific applications to be evaluated and the appropriate alloys and tempers to be chosen.
Standard

WROUGHT ALUMINUM APPLICATIONS GUIDELINES

1989-01-01
HISTORICAL
J1434_198901
This report approaches the material selection process from the designer's viewpoint. Information is presented in a format designed to guide the user through a series of decision-making steps. "Applications criteria" along with engineering and manufacturing data are emphasized to enable the merits of aluminum for specific applications to be evaluated and the appropriate alloys and tempers to be chosen.
Standard

ELECTROPLATE REQUIREMENTS FOR DECORATIVE CHROMIUM DEPOSITS ON ZINC BASE MATERIALS USED FOR EXTERIOR ORNAMENTATION

1991-06-01
HISTORICAL
J1837_199106
This SAE Standard covers the physical and performance requirements for electrodeposited copper, nickel, and chromium deposits on exterior ornamentation fabricated from die cast zinc alloys (SAE J468 alloys 903 and 925), and wrought zinc strip (ASTM B 69). This type of coating is designed to provide a high degree of corrosion resistance for automotive, truck, marine, and farm usage where a bright, decorative finish is desired.
Standard

Electroplate Requirements for Decorative Chromium Deposits on Zinc Base Materials Used for Exterior Ornamentation

2017-12-20
CURRENT
J1837_201712
This SAE Standard covers the physical and performance requirements for electrodeposited copper, nickel, and chromium deposits on exterior ornamentation fabricated from die cast zinc alloys (SAE J468 alloys 903 and 925), and wrought zinc strip (ASTM B 69). This type of coating is designed to provide a high degree of corrosion resistance for automotive, truck, marine, and farm usage where a bright, decorative finish is desired.
Standard

SINGLE TOOTH GEAR BENDING FATIGUE TEST

1997-01-01
HISTORICAL
J1619_199701
This SAE Recommended Practice defines the set-up and procedure for conducting the SAE Single Tooth Bending Fatigue Test. The details of the test fixture to be used (referred henceforth as “the test fixture” in this document) and gear test sample and the procedures for testing and analyzing the data are presented in this document.
Standard

Single Tooth Gear Bending Fatigue Test

2017-12-20
CURRENT
J1619_201712
This SAE Recommended Practice defines the set-up and procedure for conducting the SAE Single Tooth Bending Fatigue Test. The details of the test fixture to be used (referred henceforth as “the test fixture” in this document) and gear test sample and the procedures for testing and analyzing the data are presented in this document.
Standard

General Information—Chemical Compositions, Mechanical and Physical Properties of SAE Aluminum Casting Alloys

2003-12-01
HISTORICAL
J452_200312
The SAE Standards for aluminum casting alloys cover a wide range of castings for general and special use, but do not include all the alloys in commercial use. Over the years, aluminum alloys have been identified by many numbering systems as shown in Table 1. Presently, SAE is recommending the use of the UNS Numbering System to identify these materials. The castings are made principally by sand cast, permanent mold, or die cast methods; however, shell molding, investment casting, plaster cast, and other less common foundry methods may also be used. If the alloys listed do not have the desired characteristics, it is recommended that the manufacturers of aluminum castings be consulted.
Standard

General Information - Chemical Compositions, Mechanical and Physical Properties of SAE Aluminum Casting Alloys

2018-01-10
CURRENT
J452_201801
The SAE Standards for aluminum casting alloys cover a wide range of castings for general and special use, but do not include all the alloys in commercial use. Over the years, aluminum alloys have been identified by many numbering systems as shown in Table 1. Presently, SAE is recommending the use of the UNS Numbering System to identify these materials. The castings are made principally by sand cast, permanent mold, or die cast methods; however, shell molding, investment casting, plaster cast, and other less common foundry methods may also be used. If the alloys listed do not have the desired characteristics, it is recommended that the manufacturers of aluminum castings be consulted.
X