Refine Your Search

Topic

Search Results

Standard

ELECTROMAGNETIC TESTING BY EDDY CURRENT METHODS

1991-03-01
HISTORICAL
J425_199103
The purpose of this SAE Information Report is to provide general information relative to the nature and use of eddy current techniques for nondestructive testing. The document is not intended to provide detailed technical information but to serve as an introduction to the principles and capabilities of eddy current testing, and as a guide to more extensive references listed in Section 2.
Standard

AUTOMOTIVE METALLURGICAL JOINING

1970-10-01
HISTORICAL
J836_197010
This report is an abbreviated summary of metallurgical joining by welding, brazing, and soldering. It is generally intended to reflect current usage in the automotive industry; however, it does include some of the more recently developed processes. More comprehensive coverage of materials, processing details, and equipment required may be found in the Welding Handbook, Soldering Manual, and other publications of the American Welding Society and the American Society for Testing and Materials. AWS Automotive Welding Committee publications on Recommended Practices are particularly recommended for the design or product engineer. This report is not intended to cover mechanical joining such as rivets or screw fasteners, or chemical joining processes such as adhesive joining.
Standard

SELECTION AND HEAT TREATMENT OF TOOL AND DIE STEELS

1970-04-01
HISTORICAL
J437_197004
The information in this report covers data relating to SAE J438, Tool and Die Steels, and is intended as a guide to the selection of the steel best suited for the intended purpose and to provide recommended heat treatments and other data pertinent to their use. Specific requirements as to physical properties are not included because the majority of tool and die steels are either worked or given special heat treatments by the purchaser. The purchaser may or may not elect to use the accompanying data for specification purposes.
Standard

Selection and Heat Treatment of Tool and Die Steels

2018-01-09
CURRENT
J437_201801
The information in this report covers data relating to SAE J438, Tool and Die Steels, and is intended as a guide to the selection of the steel best suited for the intended purpose and to provide recommended heat treatments and other data pertinent to their use. Specific requirements as to physical properties are not included because the majority of tool and die steels are either worked or given special heat treatments by the purchaser. The purchaser may or may not elect to use the accompanying data for specification purposes.
Standard

Magnesium Wrought Alloys

2018-01-09
CURRENT
J466_201801
This SAE Standard covers the most common magnesium alloys used in wrought forms, and lists chemical composition and minimum mechanical properties for the various forms. A general indication of the usage of the various materials is also provided.
Standard

MAGNESIUM WROUGHT ALLOYS

1989-12-01
HISTORICAL
J466_198912
This SAE Standard covers the most common magnesium alloys used in wrought forms, and lists chemical composition and minimum mechanical properties for the various forms. A general indication of the usage of the various materials is also provided.
Standard

MAGNESIUM CASTING ALLOYS

1989-01-01
HISTORICAL
J465_198901
This document has not changed other than to put it into the new SAE Technical Standards Board Format This SAE Standard covers the most commonly used magnesium alloys suitable for casting by the various commercial processes. The chemical composition limits and minimum mechanical properties are shown. Over the years, magnesium alloys have been identified by many numbering systems, as shown in Table 1. Presently, SAE is recommending the use of the use of the UNS numbering system to identify those materials. Other equally important characteristics such as surface finish and dimensional tolerances are not covered in this standard.
Standard

Magnesium Casting Alloys

2018-01-09
CURRENT
J465_201801
This document has not changed other than to put it into the new SAE Technical Standards Board Format This SAE Standard covers the most commonly used magnesium alloys suitable for casting by the various commercial processes. The chemical composition limits and minimum mechanical properties are shown. Over the years, magnesium alloys have been identified by many numbering systems, as shown in Table 1. Presently, SAE is recommending the use of the use of the UNS numbering system to identify those materials. Other equally important characteristics such as surface finish and dimensional tolerances are not covered in this standard.
Standard

SOLDERS

1962-06-01
HISTORICAL
J473_196206
The choice of the type and grade of solder for any specific purpose will depend on the materials to be joined and the method of applying. Those with higher amounts of tin usually wet and bond more readily and have a narrower semi-molten range than lower amounts of tin. For strictly economic reasons, it is recommended that the grade of solder metal be selected that contains least amount of tin required to give suitable flowing and adhesive qualities for application. All the lead-tin solders, with or without antimony, are usually suitable for joining steel and copper base alloys. For galvanized steel or zinc, only Class A solders should be used. Class B solders, containing antimony usually as a substitute for some of the tin or to increase strength and hardness of the filler metal, form intermetallic antimony-zinc compounds, causing the joint to become embrittled. Lead-tin solders are not recommended for joining aluminum, magnesium, or stainless steel.
Standard

Solders

2018-08-24
CURRENT
J473_201808
The choice of the type and grade of solder for any specific purpose will depend on the materials to be joined and the method of applying. Those with higher amounts of tin usually wet and bond more readily and have a narrower semi-molten range than lower amounts of tin. For strictly economic reasons, it is recommended that the grade of solder metal be selected that contains least amount of tin required to give suitable flowing and adhesive qualities for application. All the lead-tin solders, with or without antimony, are usually suitable for joining steel and copper base alloys. For galvanized steel or zinc, only Class A solders should be used. Class B solders, containing antimony usually as a substitute for some of the tin or to increase strength and hardness of the filler metal, form intermetallic antimony-zinc compounds, causing the joint to become embrittled. Lead-tin solders are not recommended for joining aluminum, magnesium, or stainless steel.
Standard

Solders

1962-06-01
HISTORICAL
J473A_196206
The choice of the type and grade of solder for any specific purpose depend on the materials to be joined and the method of applying. Those with higher amounts of tin usually wet and bond more readily and have a narrower semi-molten range than lower amounts of tin. For strictly economic reasons, it is recommended that the grade of solder metal be selected that contains least amount of tin required to give suitable flowing and adhesive qualities for application.
Standard

Sintered Powder Metal Parts: Ferrous

2018-08-24
CURRENT
J471_201808
Powder metal (P/M) parts are manufactured by pressing metal powders to the required shape in a precision die and sintering to produce metallurgical bonds between the particles, thus generating the appropriate mechanical properties. The shape and mechanical properties of the part may be subsequently modified by repressing or by conventional methods such. as machining and/or heat treating. While powder metallurgy embraces a number of fields wherein metal powders may be used as raw materials, this standard is concerned primarily with information relating to mechanical components and bearings produced from iron-base materials.
Standard

SINTERED POWDER METAL PARTS: FERROUS

1973-08-01
HISTORICAL
J471_197308
Powder metal (P/M) parts are manufactured by pressing metal powders to the required shape in a precision die and sintering to produce metallurgical bonds between the particles, thus generating the appropriate mechanical properties. The shape and mechanical properties of the part may be subsequently modified by repressing or by conventional methods such. as machining and/or heat treating. While powder metallurgy embraces a number of fields wherein metal powders may be used as raw materials, this standard is concerned primarily with information relating to mechanical components and bearings produced from iron-base materials.
Standard

Magnetic Particle Inspection

2018-01-10
CURRENT
J420_201801
The scope of this SAE Information Report is to provide general information relative to the nature and use of magnetic particles for nondestructive testing. The document is not intended to provide detailed technical information, but will serve as an introduction to the theory and capabilities of magnetic particle testing, and as a guide to more extensive references.
Standard

Liquid Penetrant Test Methods

2018-01-09
CURRENT
J426_201801
The scope of this SAE Information Report is to supply the user with sufficient information so that he may decide whether liquid penetrant test methods apply to his particular inspection problem. Detailed technical information can be obtained by referring to Section 2.
Standard

LIQUID PENETRANT TEST METHODS

1991-03-01
HISTORICAL
J426_199103
The scope of this SAE Information Report is to supply the user with sufficient information so that he may decide whether liquid penetrant test methods apply to his particular inspection problem. Detailed technical information can be obtained by referring to Section 2.
X