Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Airframe Engineering Design for Manufacturing, Assembly and Automation

This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. Why is a design for manufacturing, assembly and automation so important? This introductory course on airframe engineering will cover the importance of design for manufacturing, assembly and automation in aerospace. It will review what the key drivers are for a “good” design and some of the key points for manufacturing and assembly of aircraft components. It will look at how an engineer can combine traditional technologies with new, cutting-edge technologies, to determine the best scenario for success.
Training / Education

Design for Manufacturing & Assembly

Design for Manufacturing and Assembly (DFM+A), pioneered by Boothroyd and Dewhurst, has been used by many companies around the world to develop creative product designs that use optimal manufacturing and assembly processes.  Correctly applied, DFM+A analysis leads to significant reductions in production cost, without compromising product time-to-market goals, functionality, quality, serviceability, or other attributes.  This course will include information on how DFM+A fits in with QFD, Concurrent Engineering, Robust Engineering, and other disciplines.
Training / Education

Metal Forming

This course covers metal forming and related manufacturing processes, emphasizing practical applications. From forged or P/M connecting rods to tailor-welded blank forming, metal parts are integral to the automotive industry. As a high value adding category of manufacturing, metal forming is increasingly important to the core competency of automobile manufacturers and suppliers. A thorough survey of metal forming processes and metal forming mechanics will be performed, including bulk deformation, sheet-metal, and powder metallurgy operations. Design considerations are fully integrated into the course and are presented with every process.
Training / Education

Aviation Parts to Medical Devices Bridging the Gap

This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. This one-day program is designed to provide introductory information for those organizations who are considering transitioning from the Aeronautic, Space and Defense industry to the Food & Drug Administration (FDA), Medical Device Manufacturing market. Reviewing essential information necessary to understand and successfully begin the journey to FDA Medical Device approval, this course will examine many of the controls between the AS9100 Standard and FDA Regulations and identify the similarities.
Training / Education

Fundamentals of Threaded Fasteners

Fastener experts believe that upwards of 95% of all fastener failures are the result of either the wrong fastener for the job or improper installation. Improper installation or incorrect fastener selection can result in catastrophic loss or damage. Learn how to avoid issues by getting the answers in this course.
Training / Education

PFMEA and the Control Plan - Overview and Application

The Process FMEA and Control Plan program introduces the basic concepts behind this important tool and provides training in how to conduct an effective PFMEA. First, the course explains what a PFMEA is and how it improves the long-term performance of your products, services and related processes by addressing process related failures. The role of the PFMEA in the overall framework of Quality Management System Requirements is explained as well as the role of the PFMEA in the Advanced Product Quality Planning (APQP) process. Additionally, the differences and relationships between the DFMEA and PFMEA are well defined.
Training / Education

AS13100 and RM13004 Design and Process Failure Mode and Effects Analysis and Control Plans

2024-07-03
This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. In the Aerospace Industry there is a focus on Defect Prevention to ensure that quality goals are met. Failure Mode and Effects Analysis (PFMEA) and Control Plan activities are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Design Failure Mode and Effects Analysis (DFMEA), Process Flow Diagrams, Process Failure Mode and Effects Analysis (PFMEA) and Control Plans as described in AS13100 and RM13004.
Training / Education

Design for Manufacture and Assembly (DFM/DFA)

2024-05-16
This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. This course provides both a functional understanding of the principles involved in conducting a Design for Manufacture/Design for Assembly (DFM/DFA) study and the process for implementing a DFM/DFA culture into the organization.
Training / Education

Design for Manufacturing & Assembly (DFM/DFA)

2024-05-13
Design for Manufacturing and Assembly (DFM+A), pioneered by Boothroyd and Dewhurst, has been used by many companies around the world to develop creative product designs that use optimal manufacturing and assembly processes. Correctly applied, DFM+A analysis leads to significant reductions in production cost, without compromising product time-to-market goals, functionality, quality, serviceability, or other attributes. In this two-day course, you will not only learn the Boothroyd Dewhurst Method, you will actually apply it to your own product design!
Technical Paper

Design Analysis of High Power Density Additively Manufactured Induction Motor

2016-09-20
2016-01-2061
Induction machines (IM) are considered work horse for industrial applications due to their rugged, reliable and inexpensive nature; however, their low power density restricts their use in volume and weight limited environments such as an aerospace, traction and propulsion applications. Given recent advancements in additive manufacturing technologies, this paper presents opportunity to improve power density of induction machines by taking advantage of higher slot fill factor (SFF) (defined as ratio of bare copper area to slot area) is explored. Increase in SFF is achieved by deposition of copper in much more compact way than conventional manufacturing methods of winding in electrical machines. Thus a design tradeoff study for an induction motor with improved SFF is essential to identify and highlight the potentials of IM for high power density applications and is elaborated in this paper.
Collection

Welding and Joining and Fastening, 2010

2010-06-01
The 12 papers in this techncial paper collection represent research in the areas of welding, riveting, joining, and fastening for automotive applications. Papers focus on the recent advances in the process optimization, analytical solution, numerical modeling, response evaluation as well as static and dynamic testing of traditional resistance spot welds, gas metal arc welds, friction stir spot welds, laser welds, rivets, mounts, adhesives, and fasteners.
Video

New Solutions for One Shot Hand Held and Robot Drilling of CFRP/Titan and -/Aluminium Stack Drilling in H8 Quality for Aerospace Applications

2012-03-23
Up to now, the reliability achieved by COTS components was largely sufficient for avionics, in terms of failure rate as well as time to failure. With the implementation of new and more integrated technologies (90 nm node, 65 nm and below), the question has arisen of the impact of the new technologies on reliability. It has been stated that the lifetime of these new technologies might decrease. The drift is expected to be technology dependent: integration, technology node, materials, elementary structure choices and process pay a key role. Figures have been published, which gives smaller lifetime than the 30 years generally required for avionics. This would of course impact not only the reliability, but also the maintenance of COTS-based avionics. Hence a new policy should be defined for the whole COTS supply chain. Faced with these impending risks, different methodologies have been developed.
Video

Business Model for Successful Commercialization of Aircraft Designs

2012-03-21
This article characterizes the special features of drilling of CFRP/Titanium and -Aluminium stacks. Simplified theoretic models will show how CFRP/Titanium stacks should be machined without scratches and burn marks contacting carbon. Low axial forces and smart chip removal technology are the main characteristics of the drilling tool technology, optimized to reach H8 quality in one shot operation. Presenter Peter Mueller-Hummel, Cutting Tools Inc.
X