Refine Your Search




Search Results

Training / Education

Design for Manufacturing & Assembly

Design for Manufacturing and Assembly (DFM+A), pioneered by Boothroyd and Dewhurst, has been used by many companies around the world to develop creative product designs that use optimal manufacturing and assembly processes. Correctly applied, DFM+A analysis leads to significant reductions in production cost, without compromising product time-to-market goals, functionality, quality, serviceability, or other attributes. This seminar will include information on how DFM+A fits in with QFD, Concurrent Engineering, Robust Engineering, and other disciplines.
Training / Education

Introduction to Airframe Engineering Design for Manufacturing, Assembly and Automation

Why is a design for manufacturing, assembly and automation so important?  This introductory course on airframe engineering will cover the importance of design for manufacturing, assembly and automation in aerospace.  It will review what the key drivers are for a “good” design and some of the key points for manufacturing and assembly of aircraft components.    It will look at how an engineer can combine traditional technologies with new, cutting-edge technologies, to determine the best scenario for success.  
Training / Education

Design for Manufacturing & Assembly (DFM/DFA)

Design for Manufacturing and Assembly (DFM+A), pioneered by Boothroyd and Dewhurst, has been used by many companies around the world to develop creative product designs that use optimal manufacturing and assembly processes. Correctly applied, DFM+A analysis leads to significant reductions in production cost, without compromising product time-to-market goals, functionality, quality, serviceability, or other attributes. In this two-day seminar, you will not only learn the Boothroyd Dewhurst Method, you will actually apply it to your own product design!  

Factory Man

Factory Man is about James Harbour and the epic struggle of the U.S. auto industry to catch up to Japan in quality and productivity. Harbour is a former manufacturing executive who, partly by chance, became the first U.S. expert to study Toyota's operations in Japan. Harbour's consulting firm, Harbour & Associates has gained worldwide recognition for its annual public studies of factory productivity. The Harbour Report is the essential annual scorecard of who is winning the productivity race in the U.S. In 1981, Harbour reported that Toyota could offer a small car for sale in the U.S. at a production cost of $1,500-$1,700 less than the Detroit automakers at that time, a cost advantage of about 30 percent. The impact on Detroit was atomic, and launched the painful, historic effort by the Big Three to catch up, which continues today. James Harbour's story, blunt and accessible, includes a detailed description of how Detroit went astray, beginning right after World War II.

Exhaust Emissions Control & System Integration and Durability, 2019

Papers in this collection focus on technology developments and the integration of these technologies into new emission control systems. Topics include the integration of various diesel particulate matter (PM) and diesel Nitrogen Oxide (NOx) reduction technologies plus analogous technologies for the growing population of direct injection gasoline engines. Novel developments in sensors and control systems will also be considered. This collection encompasses studies in the area of exhaust aftertreatment integration and durability. Topics of interest include detailed studies on the caveats of aftertreatement system design, integration and performance. Other topics of interest include studies documenting the challenges and solutions related to durability and robustness of catalytic solutions.
Technical Paper

Trends and Forecasts for Turbocharging

Predictable and unpredictable forces will change the direction of the charge-air systems industry. The driver of diesel engine development will be the stringent emissions regulations of the 1990s. The drivers in the gasoline engine market will be improved fuel economy, performance, durability and emissions. Forces will also influence the charge-air marketplace, including changes in emission standards, national fiscal policies, political issues, fuel prices, alternate fuels and consumer tastes. The world community mandate for engines that are clean, quiet, durable and fuel efficient will be satisfied, increasingly, by first-tier component suppliers developing integrated systems solutions.
Technical Paper

Evaluation and Analysis of Strength of All-Ceramic Swirl Chamber for Diesel Engines

An all-ceramic swirl chamber has been developed and analyses and evaluations concerning the strength of silicon nitride ceramic (Si3N4) have been performed with a view to using it for the entire internal wall surface of the swirl chamber. The strength characteristics of Si3N4 and their effect and variation have been determined. On the basis of measurements and analyses of thermal stresses, assembling stresses, etc., investigation of the most suitable construction and assembling methods to reduce load stresses on ceramic, and various kinds of duration tests, the swirl chamber has been confirmed to have the required durability. This engine was found to comply with the 1987 U.S. diesel particulate regulation.
Technical Paper

Integration of Reliability, Maintainability and Quality Parameters in Design

Synthesizing different customer and functional requirements into an acceptable design configuration within a given space constraints is a challenging task for design engineers. The principles for designing efficiency, noise levels, maneuverability, safety, durability, etc. into the product are well understood. However, designing for reliability, maintainability and quality turns out to be a long-drawn laborious process due to unavailability of simplified design procedures. The author in this paper develops the understanding of reliability, maintainability and quality design principles and methods for products, with specific reference to vehicle designs.
Technical Paper

Improvement of Dynamic Characteristics of Electromechanical Commutating Devices

Modern production is intensified by the extensive application of computing art to structure design. This paper deals with the results of numerical simulation of electromechanical commutating devices. Speed of operation, vibrostability, reliability and durability are basic characteristics, which can be satisfied by studying mathematical models of mechanical and magnetic systems. During the impact interaction of elastic links several modes of vibrations are excited. By developing certain conditions, the amplitudes of the higher modes can be increased by changing the intensity of energy dissipation and responsiveness of the mechanical system. Such parameters as the position and configuration of the contact elements, ratio of their natural frequencies and others should guarantee the smallest amplitudes of rebounds with a possibility to minimize transient processes occurring in the building ofthe operation.
Technical Paper

Error/Mistake Proofing During New Vehicle Launches

The engineering community is becoming increasingly aware of the significant benefits of performing error proofing on product and tooling designs. If a part or tooling can be designed or redesigned to allow for one-way assembly, the option of incorrect assembly at the plant is eliminated, making the process more robust. The goal of the error proofing exercise is to reduce operator decisions, eliminate misbuilds, and improve quality. Through participation in this type of exercise, all key stakeholders, including product, process, tooling, and production personnel, have greater opportunity to identify, prevent, and resolve potential production issues well in advance of launch.
Technical Paper

New Low MDI Polyurethane Foam System for Acoustical Barrier Applications in the Automotive Industry

Low density polyurethane foam, applied in general assembly, is being used as a replacement for rubber-based heat reactive baffles in automobile cavities to inhibit noise transmittance. Most chemically reactive urethane foam systems used in barrier applications are MDI-based (diphenylmethane diisocyanate). The use of classical MDI-based technology in assembly plants typically requires substantial levels of ventilation [1]. High capital and operating expenses associated with plant ventilation systems have hindered the growth of polyurethane technology. This paper describes benefits of using a low MDI polyurethane foam system in place of classical two-component MDI-based foam systems and conventional rubber-based heat reactive baffles. Severe industrial hygiene testing has indicated that ventilation requirements to use the low MDI foam system in assembly plants may be greatly reduced.
Technical Paper

Development of Hybrid Model for Powerplant Vibration

This paper covers the application of hybrid vibro-acoustic simulation methods to shorten the design cycle of power-plant components. A comparison is made between Frequency Response Function based and Modal based algorithms for the generation of a predictive powerplant assembly model. The effectiveness of design modifications is evaluated by loading the original and modified predictive models with experimentally identified excitation forces. The procedure is validated by correlation with experimental data.
Technical Paper

A Compact and Robust Corona Discharge Device (CDD™) for Generating Non-Thermal Plasma in Automotive Exhaust

We describe the details of a particular compact and robust Corona Discharge Device (CDD™) that generates non-thermal plasma in the harsh environment of a stoichiometric exhaust. This particular CDD™ can generate plasma power of up to 15W at exhaust gas temperatures to 850C. Optimizations of geometry, material selection, and thermal design were performed by a combination of simulation and experiment. This particular design considered tradeoffs of several factors, including plasma power, EMI shielding, thermal durability, high voltage interconnection, packaging size, and exhaust emissions reduction. This particular CDD™ was designed to meet most of the same durability and survivability specifications as an O2 sensor, since both are exposed to similar exhaust environments.
Technical Paper

Fundamental Physics Behind New Suspension Concept for Automobiles

The Transverse Leaf suspension with Superior Roll Axis is a new suspension concept for automobiles. It enables the load transfer during a turn to be more evenly redistributed between the two wheels on the same axle thus optimizing its tires lateral force capabilities. The TLSRA concept is made up of a single transverse leaf spring linking the middle of the sprung mass to the outer end of 2 transverse suspension arms per axle. Those transverse arms are mounted close to the middle of the sprung mass with their attachment points located above the mass centroïd. Each wheel assembly is mounted directly onto the free end of its respective suspension arm. Because body roll is now counteracting vertical load transfer during transient and permanent operating conditions, this suspension enables designers to keep spring stiffness low without compromising road handling.
Technical Paper

Elimination of Roll, Squat, and Dive Through Biased Suspension Response

Conventionally sprung vehicles are subject to rolling and pitching of the sprung load as the vehicle corners and accelerates, respectively. Designs which incorporate active elements seek to control these movements, frequently resulting in compromised performance or reduced fuel economy. This paper considers the possible replacement of conventional springs, shocks, and anti-sway bars with specified fluid spring components. The fluid spring components offer biased response to dynamic load variations in the following manner: provide support of the sprung load equal to the magnitude of the load at each moment, and either compressing readily to absorb upward forces originating in the wheel assembly which exceed the magnitude of the load at that moment, or extending rapidly to provide support equal to the magnitude of the load at that moment, in the event the wheel assembly tracks through a hole.
Technical Paper

The New Allison HD4070 Transmission - Design, Development and Applications

Allison Transmission has been a key player in the Military and Heavy Duty Commercial truck markets for many years. These tough vocations require transmissions that are not only capable of heavy loads, rigorous duty cycles, and proven reliability, but also provide value for the end-user and maintain compatibility with leading edge technological improvements of engines and other parts of the vehicle system. The Allison HD4070 transmission is one of the latest transmission offerings from Allison Transmission to meet the “next generation” heavy-duty vehicle needs. This product increases value to the vehicle manufacturer and customer, and provides compatibility with the fast changing electronics capabilities of modern vehicle systems and engines. These improvements are offered in a durable design that has been the trademark of Allison transmissions in these markets.
Technical Paper

Design of an Aluminum Differential for a Racing Style Car

The 1999 Lawrence Technological University (LTU) drive train consists of a sprocket and chain assembly that delivers the torque, developed by a 600cc Honda F3 engine, to the rear wheels. The torque is transferred through a limited-slip, torque sensing differential unit comprised of a gear set in a student designed housing. The 1999 differential is a second-generation aluminum housing. The idea of using aluminum was first attempted with the 1998 team who successfully completed and used aluminum despite much complexity and a few design flaws. Therefore, in the LTU Formula Team's continuing effort to optimize the design, a new less complex design was conceived to house the gear set. This innovative design reduces the number of housing components from three in 1998, to two in 1999.
Technical Paper

Three-Dimensional Heat Transfer & Thermoelastic Deformation Predictions in Forward Lighting

The thermal performance of an automotive forward-lighting assembly is predicted with a computational fluid-dynamics (CFD) program. A three-dimensional, steady-state heat-transfer model seeks to account for convection and radiation within the enclosure, conduction through the thermoplastic walls and lens, and external convection and radiation losses. The predicted temperatures agree well with experimental thermocouple and infrared data on the housing. Driven by the thermal expansion of the air near the bulb surface, counter-rotating recirculation zones are predicted within the enclosure. The highest temperatures in the plastic components are predicted on the inner surface of the shelf above the bulb where airflow rising from the hot bulb surface impinges.
Technical Paper


From the viewpoint of energy saving and air pollution prevention which are needed for development of internal combustion engines, experiments have been carried out to elucidate the true combustion bahavior of extremely lean mixtures in a closed bomb by using the microgravity techniques. Microgravity conditions established in a falling assembly enables the flame propagation and the measurement in lean-limit states. The oscillatory nature of flame propgation appeared in very lean mixtures of propane-air may be explained in term of Lewis number which is less than unity. Turbulence is shown to be ineffective in enhanching the burning velocities and indeed may cause extinction in very lean mixtures.
Technical Paper

Customer Fuel Consumption – The Vehicle Data Bus as Real–World Information Source

Road to rig problems exist as long as vehicles are being tested. Many approaches and methods exist to produce test cycles for rigs or test tracks, in order to produce viable results for the generation of statements concerning such crucial aspects as durability and fuel consumption. Modern model strategies again demand shorter–than–ever development periods, whilst meeting better–than–ever the needs and demands of special target groups. Therefore, the testing methods must also be refined, in order to gain a closer correlation to the customer's vehicle deployment. The approach introduced here makes use of real–world customer data for obtaining a closer look at how the vehicle is used by different customer groups, in different countries. The data is collected by small and unobtrusive dataloggers installed in customer vehicles. As these customers are using their own vehicles in everyday life, being unaware of the acquisition process, a database of real customer usage is generated.