Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

LOGICAL SOFTWARE PART PACKAGING FOR TRANSPORT

2020-11-16
CURRENT
ARINC641-1
The purpose of this standard is to provide a method for packaging aircraft software parts for distribution using contemporary media or by electronic distribution. This project intends to standardize and provide guidance for the storage of floppy based software, currently packaged in media set parts. This standard format can be then stored or distributed on a single physical media member (CD-ROM), or by electronic crate. The obsolescence of floppy disks drive an urgent need for this guidance.
Video

High Temperature Power Device and Packaging - The Technology Leap to Achieve Cost, Power Density and Reliability Target

2011-11-07
The three major challenges in the power electronics in hybrid and electric vehicles are: System cost, power density and reliability. High temperature power device and packaging technologies increases the power density and reliability while reducing system cost. Advanced Silicon devices with synthesized high-temperature packaging technologies can achieve junction temperature as high as 200C (compared to the present limitation of 150C) eliminating the need for a low-temperature radiator and therefore these devices reduces the system cost. The silicon area needed for a power inverter with high junction temperature capability can be reduced by more than 50 - 75% thereby significantly reducing the packaging space and power device and package cost. Smaller packaging space is highly desired since multiple vehicle platforms can share the same design and therefore reducing the cost further due to economies of scale.
Video

The New Audi A6/A7 Family - Aerodynamic Development of Different Body Types on One Platform

2011-11-17
The presentation describes the aerodynamic development and optimization process of the three different new models of the Audi A6/A7 family. The body types of these three models represent the three classic aerodynamic body types squareback, notchback and fastback. A short introduction of the flow structures of these different body types is given and their effect on the vehicle aerodynamic is described. In order to achieve good aerodynamic performance, the integration into the development process of the knowledge about these flow phenomena and the breakdown of the aerodynamic resistance into its components friction- and pressure drag as well as the induced drag is very important. The presentation illustrates how this is realized within the aerodynamic development process at Audi. It describes how the results of CFD simulations are combined with wind tunnel measurements and how the information about the different flow phenomena were used to achieve an aerodynamic improvement.
Video

Plug-In Charging Systems Monitoring

2012-02-01
Low Voltage Electric Drives are becoming very attractive for various applications in the Turf, Construction and Agricultural products being engineered today. Determining what the Customer Support Requirements are for Maintenance and Repair for the Life Cycle of the products is critical to the initial design process. Presenter Russell Christ
Video

High Volume Production of Fiber Reinforced Thermoplastic Parts

2012-03-23
Presented by: Dan Ott Web Industries Director, Business Development, Advanced Composites Market With the growth of Fiber Placement technology as a preferred automation technology in aerospace manufacturing and the rapid growth of new production line installations, it is crucial to provide material in a form which meets all necessary specifications and supports the optimum productivity available from this major capital investment made by the producer of the parts. Achieving these goals happnes when the part designer, AFP machine builder, and the slit tape producer design the best process and format which provides smooth, efficient and rapid delivery of the prepreg slit tape to the Fiber Placement laydown head. Tape size (width), slit width tolerance, spool shape and size, density of prepreg on the spool, spool change-over and handling processes all play a factor in productivity, and creating (or inhibiting) the best ROI on a full-scale AFP production line.
Video

Prepreg Slit Tape and Fiber Placement: Developing High Performance Material Delivery Systems for High-Output AFP Lines

2012-03-23
There are worldwide activities in developing guidelines and standards for fiber optic sensors. Fiber optic sensors (FOS) are increasingly demanded for structural health monitoring purposes and for measurement of physical and chemical quantities because of their specific features. However, they are not yet widely established for practical use due to a lack of guidelines and confirmed standards. Therefore, there are few groups worldwide which are very active in developing standards for use of FOS in different fields, particularly driven from aircraft industry, oil industry or the necessity to provide sensor systems for health monitoring of structures with a certain level of risk. The benefits of guidelines and/or standards on the way to well-validated and well-specified sensor systems will be presented by means of related examples. The presentation will also give an overview on the state-of-the-art and most relevant activities. Results achieved are discussed.
Journal Article

Experimental Investigation of the Near Wall Flow Downstream of a Passenger Car Wheel Arch

2018-03-01
Abstract The flow around and downstream of the front wheels of passenger cars is highly complex and characterized by flow structure interactions between the external flow, fluid exiting through the wheelhouse, flow from the engine bay and the underbody. In the present paper the near wall flow downstream of the front wheel house is analyzed, combining two traditional methods. A tuft visualization method is used to obtain the limiting streamline pattern and information about the near wall flow direction. Additionally, time resolved surface pressure measurements are used to study the pressure distribution and the standard deviation. The propagation of the occurring flow structures is investigated by cross correlations of the pressure signal and a spectral analysis provides the characteristic frequencies of the investigated flow.
Journal Article

Passive Flow Control on a Ground-Effect Diffuser Using an Inverted Wing

2018-08-13
Abstract In this experimental and computational study a novel application of aerodynamic principles in altering the pressure recovery behavior of an automotive-type ground-effect diffuser was investigated as a means of enhancing downforce. The proposed way of augmenting diffuser downforce production is to induce in its pressure recovery action a second pressure drop and an accompanying pressure rise region close to the diffuser exit. To investigate this concept with a diffuser-equipped bluff body, an inverted wing was situated within the diffuser flow channel, close to the diffuser exit. The wing’s suction surface acts as a passive flow control device by increasing streamwise flow velocity and reducing static pressure near the diffuser exit. Therefore, a second-stage pressure recovery develops along the diffuser’s overall pressure recovery curve as the flow travels from the diffuser’s low pressure, high velocity inlet to its high pressure, low velocity exit.
Journal Article

CFD and Wind Tunnel Analysis of the Drag on a Human-Powered Vehicle Designed for a Speed Record Attempt

2019-06-07
Abstract A computational fluid dynamics (CFD) and wind tunnel investigation of a human powered vehicle (HPV), designed by the Velo Racing Team at Ostfalia University, is undertaken to analyse the Eco-body’s drag efficiency. Aimed at competing in a high profile HPV speed record competition, the vehicle’s aerodynamic efficiency is shown to compare well with successful recent eco-body designs. Despite several limitations, newly obtained wind tunnel data shows that the corresponding CFD simulations offer an effective tool for analysing and refining the HPV design. It is shown that, in particular, the design of the rear wheel fairings, as well as the ride height of the vehicle, may be optimised further. In addition, refinements to the CFD and wind tunnel methodologies are recommended to help correlation.
Journal Article

Stall Mitigation and Lift Enhancement of NACA 0012 with Triangle-Shaped Surface Protrusion at a Reynolds Number of 105

2019-11-21
Abstract Transient numerical simulations are conducted over a NACA 0012 airfoil with triangular protrusions at a Reynolds number (Re) of 100000 using the γ-Reθ transition Shear Stress Transport (SST) turbulence model. Protrusions of heights 0.5%c, 1%c, and 2%c are placed at one of the three locations, viz, the leading edge (LE), 5%c on the suction surface, and 5%c on the pressure surface, while the angle of attack (AOA) is varied between 0° and 20°. Results obtained from the time-averaged solution of the unsteady Navier-Stokes equation indicate that the smaller protrusion placed at 5%c on the suction surface improves the post-stall lift coefficient by up to 59%, without altering the pre-stall characteristics. The improvement in time-averaged lift coefficients comes with enhanced flow unsteadiness due to vigorous vortex shedding.
Journal Article

Parametric Studies on Airfoil-Boundary Layer Ingestion Propulsion System

2020-03-11
Abstract From the fact that a propulsor consumes less power for a given thrust if the inlet air is slower, simulations are conducted for a propulsor imposed behind an airfoil as ideal boundary layer ingestion (BLI) propulsor to stand on the benefits of this configuration from the point of view of power and efficiency and to get a closer look on the mutual interaction between them. This interaction is quantified by the impact on three main sets of parameters, namely, power consumption, boundary layer properties, and airfoil performance. The position and size of the propulsor have great influence on the flow around the airfoil. Parametric studies are carried out to understand their influence. BLI propulsor directly affects the power saving and all of the pressure-dependent parameters, including lift and drag. For the present case, power saving reached 14.4% compared to the propeller working in freestream.
Journal Article

Measurement and Analysis of the Operations of Drayage Trucks in the Houston Area in Terms of Activities and Exhaust Emissions

2018-05-22
Abstract The effects of exhaust emissions on public welfare have prompted the US Environmental Protection Agency to take various actions toward understanding, modeling, and reducing air pollution from vehicles. This study was performed to better understand exhaust emissions of heavy-duty diesel-powered tractor-trailer trucks that operate in drayage service, which involves the moving of shipping containers to or from port terminals. The study involved the use of portable emissions measurement systems (PEMS) to measure both gaseous and particulate matter (PM) mass emission rates and record various vehicle and engine parameters from the test trucks as they performed their normal drayage service. These measurements were supplemented with port terminal gate entry/exit logs for all drayage trucks entering the two Port of Houston Authority container terminals.
Journal Article

Design of High-Lift Airfoil for Formula Student Race Car

2018-12-05
Abstract A two-dimensional model of three elements, high-lift airfoil, was designed at a Reynolds number of ?????? using computational fluid dynamics (CFD) to generate downforce with good lift-to-drag efficiency for a formula student open-wheel race car basing on the nominal track speeds. The numerical solver uses the Reynolds-averaged Navier-Stokes (RANS) equation model coupled with the Langtry-Menter four-equation transition shear stress transport (SST) turbulence model. Such model adds two further equations to the ?? − ?? SST model resulting in an accurate prediction for the amount of flow separation due to adverse pressure gradient in low Reynolds number flow. The ?? − ?? SST model includes the transport effects into the eddy-viscosity formulation, whereas the two equations of transition momentum thickness Reynolds number and intermittency should further consider transition effects at low Reynolds number.
Journal Article

Assessing Road Load Coefficients of a Semi-Trailer Combination Using a Mechanical Simulation Software with Calibration Corrections

2019-01-07
Abstract The study of road loads on trucks plays a major role in assessing the effect of heavy-vehicle design on fuel conservation measures. Coastdown testing with full-scale vehicles in the field offers a good avenue to extract drag components, provided that random instrumentation faults and biased environmental conditions do not introduce errors into the results. However, full-scale coastdown testing is expensive, and environmental biases which are ever-present are difficult to control in the results reduction. Procedures introduced to overcome the shortcomings of full-scale field testing, such as wind tunnels and computational fluid dynamics (CFD), though very reliable, mainly focus on estimating the effects of aerodynamic drag forces to the neglect of other road loads which should be considered.
Journal Article

Flow Analysis between Two Bluff Bodies in a Close Distance Platooning Configuration

2019-07-08
Abstract This article analyses the flow field between two 1/8-scale Generalized European Transport System (GETS) models which are placed in a two-vehicle platoon at close distances. Numerical simulations using the lattice Boltzmann method together with a wind tunnel experiment (open jet facility, OJF) were executed. Next, to balance measurements, coaxial volumetric velocimetry (CVV) measurements were performed to obtain information about the flow field. Three intervehicle distances, 0.10, 0.45 and 0.91 times the vehicle length, were tested for various platoon configurations where the vehicles in the platoon varied in terms of front-edge radius and the addition of tails. At the smallest intervehicle distance, the greatest reductions in drag were found for both the leading and trailing vehicles. The flow in the gap between the two vehicles follows an S-shaped path with small variations between the configurations.
Journal Article

Automated Guided Vehicles for Small Manufacturing Enterprises: A Review

2018-09-17
Abstract Automated guided vehicle systems (AGVS) are the prominent one in modern material handling systems used in small manufacturing enterprises (SMEs) due to their exciting features and benefits. This article pinpoints the need of AGVS in SMEs by describing the material handling selection in SMEs and enlightening recent technological developments and approaches of the AGVS. Additionally, it summarizes the analytical and simulation-based tools utilized in design problems of AGVS along with the influence of material handling management and key hurdles of AGVS. The current study provides a limelight towards making smart automated guided vehicles (AGVs) with the simplified and proper routing system and favorable materials and more importantly reducing the cost and increasing the flexibility.
X