Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Metal Forming

This course covers metal forming and related manufacturing processes, emphasizing practical applications. From forged or P/M connecting rods to tailor-welded blank forming, metal parts are integral to the automotive industry. As a high value adding category of manufacturing, metal forming is increasingly important to the core competency of automobile manufacturers and suppliers. A thorough survey of metal forming processes and metal forming mechanics will be performed, including bulk deformation, sheet-metal, and powder metallurgy operations. Design considerations are fully integrated into the course and are presented with every process.
Video

Exploring the Manual Forming of Complex Geometry Composite Panels for Productivity and Quality Gains in Relation to Automated Forming Capabilities

2012-03-23
In a variety of industries there is a growing need to manufacture high quality carbon fibre epoxy matrix composite structures at greater production rates and lower costs than has historically been the case. This has developed into a desire for the automation of the manufacture of components, and in particular the lay-up phase, with Automated Tape Laying (ATL) and Fibre Placement (AFP) the most popular choices. When used for large primary structures there are such potential gains to be had that both techniques have seen rapid implementation into manufacturing environments. But significant concerns remain and these have limited their wider adoption into secondary structure manufacturing, where manual forming of woven broadgoods is dominant. As a result the manufacture of secondary structures is generally explored for costs reduction through drape simulation and lower cost materials.
Video

Spotlight on Design Insight: Composite Materials: New Trends in Automotive Design

2015-05-08
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Telematics, the convergence of telecommunications and informatics, uses electronic and computer technology built in to the vehicle to provide vehicle tracking, satellite navigation, wireless technology, and diagnostic information. In the episode “Diagnostics and Prognostics: Telematics Deep Dive” (8:09), an engineer from Delphi’s Telematics program discusses the advantages and challenges of telematics devices for the automotive industry, demonstrates the installation of an aftermarket telematics device, and shows how telematics can enhance diagnostics and preventative maintenance.
Video

Spotlight on Design: Composite Materials: Advanced Materials and Lightweighting

2015-04-15
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Composite Materials: Advanced Materials and Lightweighting” (30:20), Molded Fiber Glass Companies, known for its deep involvement in the creative development of the molded fiberglass process for the Corvette, demonstrates the manufacturing of sheet molded composite for fiberglass parts. Tanom Motors introduces the Tanom Invader, a blend between an automobile and a motorcycle made exclusively with composite materials. Finally, Euro-Composites demonstrates the manufacturing of honeycomb core material made out of aramid paper and phenolic resin used in aircraft structures.
Video

Ionic Liquids as Novel Lubricants or Lubricant Additives

2012-05-10
For internal combustion engines and industrial machinery, it is well recognized that the most cost-effective way of reducing energy consumption and extending service life is through lubricant development. This presentation summarizes our recent R&D achievements on developing a new class of candidate lubricants or oil additives ionic liquids (ILs). Features of ILs making them attractive for lubrication include high thermal stability, low vapor pressure, non-flammability, and intrinsic high polarity. When used as neat lubricants, selected ILs demonstrated lower friction under elastohydrodynamic lubrication and less wear at boundary lubrication benchmarked against fully-formulated engine oils in our bench tests. More encouragingly, a group of non-corrosive, oil-miscible ILs has recently been developed and demonstrated multiple additive functionalities including anti-wear and friction modifier when blended into hydrocarbon base oils.
Video

Study of Materials and Coatings Used for Drilling Carbon Fiber Re-inforced Plastics

2012-03-14
With the increased usage of Carbon Fiber Reinforced Plastics (CFRP) in the aircraft industry, there has been increased pressure to improve cutting tool life. Tungsten carbide tools were the first to be applied to CFRP materials. Poly Crystalline Diamond (PCD) tools also became an acceptable material to be used as a cutting tool material. In recent years, Chemical Vapor Deposition (CVD) diamond tools have become more popular as a cutting tool material for CFRP. This study compares these possible cutting tool materials in the drilling of CFRP. Wear is measured as well as hole quality. Life is determined by common industry standards with regard to fiber break out in a common CFRP material. An economic analysis is conducted in order to determine cost per hole. Presenter Christophe Petit
Video

Study of Exit Burr Formation and Exit Burr Reduction in Automated Drilling of Titanium Stacked With Carbon Fiber Composite

2012-03-16
A series of flight tests were conducted to design and evaluate a Combined Vision System (CVS) that integrates a forward looking infrared video image with synthetic vision on a primary flight display. System features included colorizing the video image to mesh with the synthetic terrain background, decluttering the approach symbology to facilitate the detection of the approach lights and runway markings, creating a semi-transparent IR sky to ensure continuous situational awareness of the surrounding terrain, and annunciating the decision height to facilitate the transition to the actual runway environment. Over 100 approaches were flown during three flight test sessions. For the first flight test session pilots reviewed early CVS proofs of concept on Honeywell's Citation Sovereign.
Video

A350XWB Fiber Placement Spars; From R&D Conception Phase to Serial Production

2012-03-23
At the end of 2006, two MTorres engineers visited the plant of Airbus UK in Filton receiving a new challenge: Find a more efficient way to manufacture Carbon Fiber Spars for the new A350 program. The range of possibilities were wide: manual infusion methods (RTM, RIM, RFI...), Automatic Taping & hot forming, or the new technology proposed, Fiberplacement or AFP. Two (2) options were considered: hot forming+ATL and AFP (both using prepeg technology.) The usage of a flat lay-up + hot forming technology was used in the only Airbus program that used carbon fiber for the wing manufacturing so far, the A400M. The expected greater complexity of A350 spar created doubts on the feasibility of using the above process, while the AFP technology, consisting of laying up directly on the final shape of the spar, also raised questions of technical feasibility, apart from the economic ?business case?, in case the productivity of the cell was not big enough. A ?Spar team?
Video

Automating AFP Tuning Using a Laser Sensor

2012-03-22
A significant step is achieved on the flight control actuation system toward the more electrical aircraft through the Airbus A380, A400M and the A350 development phase ongoing. The A380/A400M/A350 features a mixed flight control actuation power source distribution, associating electrically powered actuators with conventional FlyByWire hydraulic servocontrols. In the scope of the preparation of the future Airbus Aircraft, this paper presents the perspectives of the use of the EMA technologies for the flight control systems in the more electrical aircraft highlighting the main technical challenges need to treat: jamming susceptibility, ?on board? maintenance reduction, Operational reliability increase, power electronics and power management optimization, and regarding the environmental constraints, the predicted performances; the benefits associated to the optimized utilization of on-board power sources.
Video

Composite Predictive Engineering Studies - American Chemistry Council Plastics Division

2012-05-29
Since 2006 Oak Ridge National Labs (ORNL) and the Pacific Northwest National Labs (PNNL) have conducted research of injection molded long glass fiber thermoplastic parts funded by U.S. DOE. At DOE's request, ACC's Plastics Division Automotive Team and USCAR formed a steering committee for the National Labs, whose purpose was to provide industry perspective, parts materials and guidance in processing. This ACC affiliation enabled the plastics industry to identify additional key research requirements necessary to the success of long glass fiber injection molded materials and their use in the real world. Through further cooperative agreements with Autodesk Moldflow and University of Illinois, a new process model to predict both fiber orientation distribution and fiber length distribution is now available. Mechanical property predictive tools were developed and Moldflow is integrating these models into their software.
Video

5000 Hours Aging of THERBAN® (HNBR) Elastomers in an Aggressive Biodiesel Blend

2012-05-23
The need for light-weighting of automotive structures has spurred on a tremendous amount of interest in and development of low cost carbon fiber composite materials and manufacturing. This presentation provides a description of the commercial carbon fiber concept compared to traditional aerospace and specialty carbon fiber products. A specific update is presented on the development and commercialization of new low cost carbon fiber based on lignin / PAN precursor technology. The second focus of the presentation is on carbon fiber composite manufacturing processes, including carbon SMC, RTM, prepregs, and thermoplastic processes. Advantages and disadvantages of these processes are discussed, especially related to low cost manufacturing. Presenter George Husman, Zoltek Companies Inc.
Video

Polycarbonate Glazing - Accelerated Wiper Testing, Surface Characterization and Comparison with On-Road Fleet Data

2012-05-23
Exatec� PC glazing technology team, has developed advanced weathering and abrasion resistant coatings technology that can be applied to protect polycarbonate. It is of particular interest to quantify and understand the factors that determine the surface abrasion performance of coated PC in rear window and backlight applications that have a wiper system. In the present study we describe Exatec's lab scale wiper testing equipment and test protocols. We also describe adaptation of optical imaging system to measure contrast and nano-profiling using nano-indenter, as post wiper surface characterization methods. These methods are more sensitive to fine scratches on glazing surface than standard haze measurement and mechanical profilometry. Three coating systems were investigated; Siloxane wetcoat (A), Siloxane wetcoat (B), and Siloxane wetcoat (B) plus plasma coat (Exatec� E900 coating). The performance comparisons were made using all these surface characterization methods.
Collection

Sheet/Hydro/Gas Forming Technology and Modeling, 2014

2014-04-01
This technical paper collection advances the knowledge in the state of the art in all types of sheet metal forming. Topics include using simulated, analytical, numerical and experimental tools and sheet metals for the various forming technologies.
Journal Article

Studies on Friction Mechanism of NAO Brake-Pads Containing Potassium Titanate Powder as a Theme Ingredient

2017-09-17
Abstract Potassium titanate (KT) fibers/whiskers are used as a functional filler for partial replacement of asbestos in NAO friction materials (FMs). Based on little information reported in open literature; its exact role is not well defined since some papers claim it as the booster for resistance to fade (FR), or wear (WR) and sometimes as damper for friction fluctuations. Interestingly, KT fibers and whiskers (but not powder) are proved as carcinogens by the International Agency for Research on Cancer (IARC). However, hardly any efforts are reported on exploration of influence of KT powder and its optimum amount in NAO FMs (realistic composites) in the literature. Hence a series of five realistic multi-ingredient compositions in the form of brake-pads with similar parent composition but varying in the content of KT powder from 0 to 15 wt% (in the steps of 3) were developed. These composites were characterized for physical, mechanical, chemical and tribological performance.
Journal Article

Disc Pad Physical Properties vs. Porosity: The Question of Compressibility as an Intrinsic Physical Property

2017-09-17
Abstract Disc pad physical properties are believed to be important in controlling brake friction, wear and squeal. Thus these properties are carefully measured during and after manufacturing for quality assurance. For a given formulation, disc pad porosity is reported to affect friction, wear and squeal. This investigation was undertaken to find out how porosity changes affect pad natural frequencies, dynamic modulus, hardness and compressibility for a low-copper formulation and a copper-free formulation, both without underlayer, without scorching and without noise shims. Pad natural frequencies, modulus and hardness all continuously decrease with increasing porosity. When pad compressibility is measured by compressing several times as recommended and practiced, the pad surface hardness is found to increase while pad natural frequencies and modulus remain essentially unchanged.
Journal Article

Thermal Energy Performance Evaluation and Architecture Selection for Off-Highway Equipment

2021-08-31
Abstract An accurate and rapid thermal model of an axle-brake system is crucial to the design process of reliable braking systems. Proper thermal management is necessary to avoid damaging effects, such as brake fade, thermal cracking, and lubricating oil degradation. In order to understand the thermal effects inside of a lubricated braking system, it is common to use Computational Fluid Dynamics (CFD) to calculate the heat generation and rejection. However, this is a difficult and time-consuming process, especially when trying to optimize a braking system. This article uses the results from several CFD runs to train a Stacked Ensemble Model (SEM), which allows the use of machine learning (ML) to predict the systems’ temperature based on several input design parameters. The robustness of the SEM was evaluated using uncertainty quantification.
Journal Article

Comparison of Formability between Steel and Aluminum Fender Panels

2021-06-02
Abstract Reducing a vehicle’s weight is an efficient method to reduce energy consumption. Aluminum alloy is the best material for lightweight automobiles. However, the poor formability of aluminum means that it is difficult to develop stamping dies. This study designs a suitable forming tool for aluminum fenders. A simulation and an experiment are used to analyze the formability of aluminum fenders. A theoretical calculation, experimental testing, and sampling comparison are used to verify the design. The material properties of steel and aluminum are firstly studied and compared. The results show that a traditional S-type blank die face design is not suitable for aluminum because of its low tensile strength and the potential for elongation. A relatively flat trapezoid blank die face design is proposed to smooth the variation. However, a flat die face for a trapezoidal blank limits stretching, so another design is essential to improve the formability.
Journal Article

Carbon Fiber/Epoxy Mold with Embedded Carbon Fiber Resistor Heater - Case Study

2018-04-07
Abstract The paper presents a complete description of the design and manufacturing of a Carbon Fiber/epoxy mold with an embedded Carbon Fiber resistor heater, and the mold performances in terms of its surface temperature distribution and thermal deformations resulting from the heating. The mold was designed for manufacturing aileron skins from Vacuum Bag Only prepreg cured at 135°C. The glass transition temperature of the used resin-hardener system was about 175°C. To ensure homogenous temperature of the mold working surface in the course of curing, the Carbon Fiber heater was embedded in a layer of a highly heat-conductive cristobalite/epoxy composite, forming the core of the mold shell. Because the cristobalite/epoxy composite displayed much higher thermal expansion than CF/epoxy did, thermal stresses could arise due to this discrepancy in the course of heating.
Journal Article

Investigation of Residual Stresses in Cold-Formed Steel Sections with Nonlinear Strain-Hardened Material Model

2018-09-17
Abstract In this article, forming residual stresses in cold-formed small-radius corner sections are analytically predicted with the consideration of the shift in the neutral axis and the nonlinear strain-hardened material model. The predicted forming stress results in the transverse direction show a trend of increased compressive residual stress in the outer surface and reduced tensile residual stress in the inner surface as the corner radius-to-thickness ratio increases in small-radius bends. In the longitudinal direction, there is no significant change in the residual stress values observed in the inner and outer surfaces with respect to an increase in corner radius-to-thickness ratios. But a considerable decrease in compressive residual stress and an increase in tensile stress values are observed in the midsection areas with an increase in the corner radius-to-thickness ratio.
Journal Article

Improving Hole Expansion Ratio by Parameter Adjustment in Abrasive Water Jet Operations for DP800

2018-09-17
Abstract The use of Abrasive Water Jet (AWJ) cutting technology can improve the edge stretchability in sheet metal forming. The advances in technology have allowed significant increases in working speeds and pressures, reducing the AWJ operation cost. The main objective of this work was to determine the effect of selected AWJ cutting parameters on the Hole Expansion Ratio (HER) for a DP800 (Dual-Phase) Advanced High-Strength Steel (AHSS) with s0 = 1.2 mm by using a fractional factorial design of experiments for the Hole Expansion Tests (HET). Additionally, the surface roughness and residual stresses were measured on the holes looking for a possible relation between them and the measured HER. A deep drawing quality steel DC06 with s0 = 1.0 mm was used for reference. The fracture occurrence was captured by high-speed cameras and by Acoustic Emissions (AE) in order to compare both methods.
X