Refine Your Search

Topic

Author

Affiliation

Search Results

Book

Death Rays, Jet Packs, Stunts and Supercars: The Fantastic Physics of Film's Most Celebrated Secret Agent

2005-01-01
James Bond would have died a thousand deaths if not for Q, the genius behind the pen grenades and weaponized sports cars that have helped Britain's most famous secret agent cheat death in twenty films. Here Barry Parker demonstrates how science and technology have been as important to 007 as good looks, shaken martinis, and beautiful women. Using entertaining sketches and nontechnical language, Parker explains the basic physics behind the gadgets, cars, and stunts in a number of Bond films, from the jet packs in Thunderball to the dynamics of daredevil bungee jumping in GoldenEye. If you've ever wondered whether the laser could have actually cut Bond in half (Goldfinger), if a wristwatch could really unzip a woman's dress (Live and Let Die), or whether your car could do the 360-degree barrel roll from The Man with the Golden Gun, this book is for you.
Technical Paper

Guidelines on the Use of Experimental Sea for Modeling and Understanding Road Noise in Cars

1999-05-17
1999-01-1704
Over the last years, SEA has been recognized as a useful tool to model and analyze the high-frequency vibro-acoustic behavior of fully assembled complex structures. This paper discusses the experimental derivation of the loss factor model of a passenger car. The paper outlines the different steps which need to be taken to obtained a fully validated experimental SEA model. This includes the subdivision into subsystems, the PIM measurement campaign, the derivation of the loss factors and their associated confidence levels and the model validation. The paper further details how the experimental SEA model was used to quantify and investigate the airborne and structure-borne contributions to the interior noise level for a road noise test condition. The operational power inputs to the vehicle were indirectly determined from operational response measurements. A contribution analysis showed that airborne noise sources dominated structure-borne noise sources above 500Hz.
Technical Paper

Analysis of Vehicle Pillar Cavity Foam Block Effect on Interior Noise Using SEA

1999-05-17
1999-01-1701
Closed cell foam has been used for filling vehicle pillar cavities at select locations to block road noise transmitted through pillars. In the past, most pillar foam implementations in vehicle programs were driven by subjective improvements in interior sound. In this study road test results are used to correlate a detailed CAE (Computer-Aided Engineering) model based on the statistical energy analysis method. Noise reduction characteristics of pillar with a number of foam block fillings were then studied using the CAE model. The CAE models provided means to model and understand the mechanism of noise energy flow through pillar cavities. A number of insightful conclusions were obtained as result of the study.
Technical Paper

Evaluating Vehicle Interior Noise Quality Under Transient Driving Conditions

1999-05-17
1999-01-1683
This paper presents a software-driven procedure for continuous assessment facilitating an evaluation of non-stationary sound quality. The noise stimuli are presented to the test persons via headphones and a subwoofer from a personal computer. The key feature of the rating procedure is the “zonal pairwise comparison” for the time zones at the beginning and the end of the noise sequences. Evaluation of data together with time variant objective parameters by means of statistical methods is described. The results and models from multiple regession analysis are given.
Technical Paper

Aerodynamic Effects of Oversized Tires and Tall Landing Gear on a Small General Aviation Aircraft

1999-04-20
1999-01-1592
An experimental investigation was conducted to identify the aerodynamic effects of oversized low-pressure (Tundra) tires and tall landing gear on a Piper Super Cub airplane. Water tunnel and wind tunnel tests were performed using, respectively, a 1/20 scale model and full-scale landing gear and tire components. Force and moment data suggest that larger tires and taller gear most affect the drag and side force. Small trim changes are apparent, but the basic static stability behavior appears unchanged.
Technical Paper

Considerations About Chaotic Dynamics of Exhaust Tube and its Design Optimization in Respect to its Dynamic Properties

1999-05-17
1999-01-1657
Vibration of an exhaust tube with a non-linear fixing construction is analyzed. Numerical and laser holography investigation methods are used for the determination of vibration processes happening nearby the cylinder fixing areas. Obviously, the analyzed non-linear system can produce complex reactions even to harmonic excitations. The knowledge about such zones of “wrong” dynamic behavior may help to eliminate and reduce higher noise levels and extend the lifetime of the construction.
Technical Paper

Quantification of Intake System Noise Using an Experimental Source-Transfer-Receiver Model

1999-05-17
1999-01-1659
Design optimisation with respect to interior noise is currently a topic of great concern for the automotive industry. An essential element in this process is to obtain a correct understanding of the various noise sources which are present, and the ways in which these sources propagate to the critical receiver. An experimental source-transfer-receiver methodology is presented, that allows quantifying the structure borne and airborne source strength of the intake system components and its contribution to the interior noise. The method allows interior noise optimisation after identification of the dominant contributors. The methodology is applied to identify the noise contribution of the air intake system to the interior noise of an 8-cylinder upper class vehicle. Correlation of the Structure Borne Transfer Path Analysis and Airborne Source Quantification models with physical decoupling experiments demonstrates a high correspondence.
Technical Paper

Intake/ Exhaust Noise Reduction with Rig Test Optimization – Case Studies

1999-05-17
1999-01-1660
The study employed the rig test method for the intake/exhaust noise investigation by using shaker. This article describes two case studies including 1.2 liter minivan and a 250 c.c. motorcycle. For the minivan case, it was verified that along with the reduction of 5∼8 dB(A) of intake noise the interior noise was also improved using the rig test optimization result. For the motorcycle case, It was found that there was very good correlation of the exhaust noise measured among the engine dynamometer, road test and rig test after the temperature effect was compensated. Hence, the study chose the rig test as a development tool to get prompt NVH evaluation results on the different exhaust pipe lengths and keep the development time schedule. From the results, it is concluded that the simple and cheap rig test evaluation technique is vital and a very effective tool to achieve the vehicle NVH development goal.
Technical Paper

Gas Flows Through the Inter-Ring Crevice and Their Influence on UHC Emissions

1999-05-03
1999-01-1533
Influence of the inter-ring crevice, the volume between the top and second piston rings, on unburned hydrocarbon (UHC) emission was experimentally and numerically investigated. The ultimate goal of this study was to estimate the level of UHC emission induced by the blow-up of inter-ring mixture, i.e., unburned gases trapped in the inter-ring crevice. In the experiments, the inter-ring mixture was extracted to the crankcase during the late period of expansion and the early period of exhaust stroke through the engraved grooves on the lower part of cylinder wall. Extraction of the mixture resulted in the significant reductions of UHC emission in proportion to the increments of blowby flow rate, without any losses in efficiency and power. This experimental study has confirmed the importance of inter-ring crevice on UHC emission in an SI engine and established a relationship between the inter-ring mixture and UHC emission.
Technical Paper

Mathematical Models of Fastened Structural Connections

1999-04-20
1999-01-1576
The development of efficient and reliable methods for the design and analysis of fastened structural connections is among the most important problems in aerospace applications because fastened structural connections are common sites of failure initiation. Numerical simulation of fastened structural connections is difficult because there are complicated interactions between the fasteners and the structural components being joined and one of the most important attributes of a fastened connection, the clearance, is a stochastic variable. This paper presents a mathematical model for frictionless shear connections and its implementation within the framework of the p-version of the finite element method.
Technical Paper

Artificial Neural Network Based Energy Storage System Modeling for Hybrid Electric Vehicles

2000-04-02
2000-01-1564
The modeling of the energy storage system (ESS) of a Hybrid Electric Vehicle (HEV) poses a considerable challenge. The problem is not amenable to physical modeling without simplifying assumptions that compromise the accuracy of such models. An alternative is to build conventional empirical models. Such models, however, are time-consuming to build and are data-intensive. In this paper, we demonstrate the application of an artificial neural network (ANN) to modeling the ESS. The model maps the system's state-of-charge (SOC) and the vehicle's power requirement to the bus voltage and current. We show that ANN models can accurately capture the complex, non-linear correlations accurately. Further, we propose and deploy our new technique, Smart Select, for designing ANN training data.
Technical Paper

Improving the Aerodynamic Stability of a Practical, Low Drag, Aero-Stable Vehicle

2000-04-02
2000-01-1577
The aerodynamic drag of future low emission vehicles will need to be low. Unfortunately, vehicle shapes that result in low drag coefficients - of the order of 0.15 - are often aerodynamically unstable in crosswinds. The addition of wheels, transmission, radiators, suspension, steering, brakes, air ducts and wing mirrors can easily increase this drag coefficient to 0.24 and above and produce an undesirable lift distribution. The Aero-Stable Carbon Car (ASCC) is a research project, in conjunction with industrial partners, to design and build a practical 3 to 4 seat low drag car (CD less than 0.20) with an acceptable lift distribution (front to rear) which is also stable in crosswinds and in yaw through a series of low speed wind tunnel tests performed in the Cranfield College of Aeronautics 8′ × 6′ wind tunnel facility.
Technical Paper

An Integrated Study of the Ford PRODIGY Aerodynamics using Computational Fluid Dynamics with Experimental Support

2000-04-02
2000-01-1578
The Ford P2000 prototype vehicle represents Ford Motor Company's commitment towards environmental stewardship through high fuel efficiency and low tailpipe emission. Low aerodynamic drag coefficient (Cd), weight reduction, and power train efficiency improvements are required in order to accomplish the overall fuel economy target. The objective of this study is to establish an aerodynamic efficient body shape (Cd = .20) that meets the cost, weight, styling, package and fuel economy targets. Furthermore, this vehicle must be able to be operated and manufactured. A new computational fluid dynamics (CFD) method based on a lattice gas approach was piloted for developing and evaluating body shape design alternatives in support of the P2000 PRODIGY aerodynamic objective. Wind tunnel tests were performed to further explore the aerodynamic opportunities that are beyond the capability of the computational method as well as validate the CFD prediction.
Technical Paper

Collection Efficiency and Ice Accretion Characteristics of Two Full Scale And One 1/4 Scale Business Jet Horizontal Tails

2000-05-09
2000-01-1683
Collection efficiency and ice accretion calculations have been made for a series of business jet horizontal tail configurations using a three-dimensional panel code, an adaptive grid code, and the NASA Glenn LEWICE3D grid based ice accretion code. The horizontal tail models included two full scale wing tips and a 25% scale model. Flow solutions for the horizontal tails were generated using the PMARC panel code. Grids used in the ice accretion calculations were generated using the adaptive grid code ICEGRID. The LEWICE3D grid based ice accretion program was used to calculate impingement efficiency and ice shapes. Ice shapes typifying rime and mixed icing conditions were generated for a 30 minute hold condition. All calculations were performed on an SGI Octane computer. The results have been compared to experimental flow and impingement data.
Technical Paper

Visualization of the Qualitative Fuel Distribution and Mixture Formation Inside a Transparent GDI Engine with 2D Mie and LIEF Techniques and Comparison to Quantitative Measurements of the Air/Fuel Ratio with 1D Raman Spectroscopy

2000-06-19
2000-01-1793
Mie-Scattering and laser induced exciplex fluorescence (LIEF) were used to visualize the distribution of liquid fuel and fuel vapor inside an optical accessible one-cylinder research engine with gasoline direct injection (GDI). Using a tracer which was developed especially for the environments of gasoline combustion engines, LIEF enables an extensive separation between liquid and vapor phase and delivers a signal proportional to the equivalence ratio. Simultaneous images of LIEF and Mie scattering proof the high quality of the phase separation using this tracer concept. The mixture formation process will be shown exemplary at one operation point with homogeneous load and another with stratified load. First results of determining the air/fuel ratio by means of linear Raman spectroscopy will be presented and compared with the two-dimensional qualitative distribution of the fuel vapor (LIEF).
Technical Paper

Experimental Investigation of an Optical Direct Injection S.I. Engine Using Fuel-Air Ratio Laser Induced Fluorescence

2000-06-19
2000-01-1794
To provide fuel/air ratio quantitative measurements in an S.I engines, a transparent cylinder engine is investigated with the Fuel-Air Ratio Laser Induced Fluorescence (FARLIF) technique. In a homogeneous mixture, the two dimensional distribution for the fuel/air ratio is calibrated and measured during the compression stroke for different equivalence ratios. After spark ignition, the combustion zone and the flame front are visualized by laser sheet LIF. The direct-injection stratified-charge, new concept for gasoline engines is investigated with FARLIF. In the direct injection gasoline engine where the fuel is directly injected into a cylinder and the flow is highly turbulent, two injection timings are used: -early injection (i.e. during the intake stroke) to promote a homogeneous distribution; -late injection during the compression stroke, to generate a ultra-lean stratified charge.
Technical Paper

Nox Trap Control by Physically Based Model

1999-10-25
1999-01-3503
For a NOx trap catalyst to work properly, it is important that the times for the lean period and the rich spikes are correctly calculated in the engine management system (EMS). This paper deals with the development of a physically based NOx trap model for implementation in the EMS. The catalyst was divided into different segments (complete mixed cells) to correctly mimic the axial distribution of stored NOx and the axial temperature profile. Furthermore, the model included physical steps as adsorption, desorption, storage and release of NOx. The model also includes the storage and reduction of O2 and a simplified model of the heat release from the oxidation of the reductants. The model could successfully describe the process of storage and release in a short time interval. However, problems to describe the function of the NOx trap occurred after longer time in the vehicle because of inaccurate estimation of the input variables.
Technical Paper

AVL SDIS Mk.II - Low Cost Automotive FI Applied to 2-Stroke Engines for Future CARB - Regulations

1999-09-28
1999-01-3285
The basic Semi-Direct-Injection System (SDIS) which is already in production for PWC and applied to small 2-wheeler engines features a low-pressure fuel injection system injecting through the rear scavenge port window in the cylinder symmetry plane onto the piston crown. The patented new SDIS Mk.II System [1] injects through an (additional) scavenge port window that is positioned above the scavenge ports and is controlled by a window in the piston skirt. This new arrangement allows longer injection duration and also other injector positions and directions. A CFD simulation by AVL's FIRE-CFD-code with moving piston and exhaust gas dynamics compares the different injector positions and directions for WOT and rated speed and for a part throttle low speed case. The SDIS Mk.II injection system consists of mass-produced automotive parts thus giving a low cost approach for present 2-stroke engines requiring only moderate engine modifications.
Technical Paper

Comparison of Different Ways for Image Post-Processing: Detection of Flame Fronts

1999-10-25
1999-01-3651
A detailed understanding of the complex chemistry-turbulence interaction is gaining an increasing importance for further improvement of IC engine performance. Multidimensional optical diagnostic techniques have become a versatile tool for engine development. Sophisticated automatic data post-processing will achieve an increasing significance for efficient data reduction in such optical experiments. The focus of this paper is the detection of flame fronts using different image processing algorithms. In a further step of the data reduction, the extraction of the length of the flame front and the area of the burnt gases is presented. A strategy relying on a sensitivity analysis is discussed which allows an objective choice of parameters necessary for the application of the mathematical algorithms.
Technical Paper

High Pressure Diesel Spray and Combustion Visualization in a Transparent Model Diesel Engine

1999-10-25
1999-01-3648
A database of information concerning the spray development and pollutant formation in common-rail, direct-injection Diesel engine is constructed using a transparent model Diesel engine. Spray development is investigated using optical diagnostics: Mie scattering and Laser Induced Exciplex Fluorescence (LIEF) make possible qualitative visualization of liquid and vapor phases. The injection pressure/nozzle hole diameter is found to be the most important parameter (in the parameter range used for the study): it reduces the liquid penetration length and improves the mixing of vapor fuel. Direct imaging of combustion development shows the influence of different engine parameters on flame location. Comparison with measured vapor distributions shows the effect of thermal expansion on the vapor plume before any light from combustion is visible. Soot formation is investigated using Laser Induced Incandescence imaging.
X