Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Automotive NVH Analysis and Control

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). The course introduces the basic knowledge of vehicle noise and vibration, provides the analysis and control methods for noise and vibration sources, and transfer paths, and describes the occupants' responses and control. The course is specially designed for NVH engineer and related graduate participants. The course combines the NVH theory and engineering practices. After finishing the course, the students will deeply understand the mechanism of NVH and promote their capacity to solve engineering problems. 
Training / Education

Road Noise Control Technology

This course is offered in China only and presented in Mandarin Chinese. Sound quality is one of the most important desired attributes for the customers, and road noise is one of the most vital factors influencing sound quality. Road noise is the major interior noise source, especially for EVs, and it is a common customer complaint. In order to improve the customers’ satisfaction and market share, almost all the OEMs have spent lots of sources on the road noise attenuation.
Training / Education

Vehicle Noise Control Engineering Academy - Powertrain Noise Track

2024-10-14
The Vehicle Noise Control Engineering Academy covers a variety of vehicle noise control engineering principles and practices. There are two concurrent, specialty tracks (with some common sessions): Powertrain Noise and Vehicle Interior Noise. Participants should choose and register for the appropriate Academy they wish to attend. The Powertrain Noise track focuses on noise and vibration control issues associated with internal combustion, hybrid and electric powered vehicles. The vehicle in this case includes passenger cars, SUVs, light trucks, off-highway vehicles, and heavy trucks.
Training / Education

Vehicle Noise Control Engineering Academy - Vehicle Interior Noise Track

2024-10-14
The Vehicle Noise Control Engineering Academy covers a variety of vehicle noise control engineering principles and practices. There are two concurrent, specialty tracks (with some common sessions): Vehicle Interior Noise and Powertrain Noise. Participants should choose and register for the appropriate track they wish to attend. The Vehicle Interior Noise track focuses on understanding the characteristics of noise produced by different propulsion systems, including internal combustion, hybrid and electric powered vehicles and how these noises affect the sound quality of a vehicle’s interior.  
Training / Education

Advanced Applications of Heavy Vehicle EDR Data

2024-06-10
This class will provide the student with the skills, knowledge, and abilities to interpret, analyze and apply HVEDR data in real-world applications. This course has been designed to build on the concepts presented in the SAE course Accessing and Interpreting Heavy Vehicle Event Data Recorders (ID# C1022). Advanced topics will include associating HVEDR data with collision events through timestamps, odometer logs, and data signatures, validating HVEDR speed data using specified vehicle parameters, performing time and distance analyses using HVEDR data, and correlating HVEDR data to physical evidence from the vehicle and roadway.
Training / Education

Autonomous Technology in Long-Haul Trucking

2024-05-23
Billions of dollars have been invested in AV trucking. It is no longer a matter of IF, it is a matter of When, Where, Who and How? This will be the most disruptive event to happen in our supply chains in more than 4 decades. Are you ready to help your company usher in the most disruptive technology? This class will help you prepare and understand what you will need to do to become part of the ecosystem. You will learn how to identify what needs to start, stop, and change for you to adopt, integrate, and scale. Join us to learn the answers to key questions like the following: 1)How will maintenance change in the AV trucking ecosystem?
Video

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-11-29
Battery Electric Vehicles and Extended Range Electric Vehicles, like the Chevrolet Volt, can use electrical energy from the Grid to meet the majority of a driver�s transportation needs. This has the positive societal effects of displace petroleum consumption and associated pollutants from combustion on a well to wheels basis, as well as reduced energy costs for the driver. CO2 may also be lower, but this depends upon the nature of the grid energy generation. There is a mix of sources � coal-fired, gas -fired, nuclear or renewables, like hydro, solar, wind or biomass for grid electrical energy. This mix changes by region, and also on the weather and time of day. By monitoring the grid mix and communicating it to drivers (or to their vehicles) in real-time, electrically driven vehicles may be recharged to take advantage of the lowest CO2, and potentially lower cost charging opportunities.
Video

Development and Build-up of a Hybrid Commercial Vehicle

2011-12-05
In 1991, Hino Motors, Ltd. (Hino) launched the world's first hybrid city buses in the market. Thereafter, Hino has improved its hybrid vehicle technology and applied it to various commercial vehicles including city buses, sightseeing buses, medium-duty trucks and light-duty trucks. Presenter Shigeru Suzuki , Hino Motors, Ltd Shigeru Suzuki , Hino Motors, Ltd
Video

The Development of New Hino Hybrid Commercial Vehicles

2011-12-05
Today CFD is an important tool for engineers in the automotive industry who model and simulate fluid flow. For the complex field of Underhood Thermal Management, CFD has become a very important tool to engineer the cooling airflow process in the engine bay of vehicles. Presenter Peter Gullberg, Chalmers University of Technology
Video

The increased challenge of Commercial Vehicle Wiring

2011-12-05
Our trucks today contain anywhere from XX to XX computers on board, some of these computers have the capability to manage algorithms for the correct operation of up to XX systems. Presenter Jesus Gomez, Daimler Trucks North America LLC
Video

Maturity Level and Variant Validation of Mechatronic Systems in Commercial Vehicles

2011-12-05
Driver assistance systems (e.g. the emergency brake assist Active Brake Assist2, or ABA2 for short, in the Mercedes-Benz Actros) are becoming increasingly common in heavy-duty commercial vehicles. Due to the close interconnection with drivetrain and suspension control systems, the integration and validation of the functions make the most exacting demands on processes and tools involved in mechatronics development. Presenter Thomas Bardelang, Daimler AG
Video

Mainstream and Main Street Hybrids

2012-03-29
Several technological advancements have enabled hybrid technology to become a viable option in the commercial truck market. Although hybrid trucks are becoming more mainstream, they are not the right alternative fuel solution for every application. When matched with the right duty cycle, hybrid technology can provide a significant cost savings. Due to these advancements and anticipated benefits, hybrid commercial trucks are forecasted to become a significant part of the commercial truck market. Presenter Glenn Ellis, Hino Motors Sales USA Inc.
Video

Experience with Using Hardware-in-the-Loop Simulation for Validation of OBD in Powertrain Electronics Software

2011-12-05
These advanced checks have resulted in development of many new diagnostic monitors, of varying types, and a whole new internal software infrastructure to handle tracking, reporting, and self-verification of OBD related items. Due to this amplified complexity and the consequences surrounding a shortfall in meeting regulatory requirements, efficient and thorough validation of the OBD system in the powertrain control software is critical. Hardware-in-the-Loop (HIL) simulation provides the environment in which the needed efficiency and thoroughness for validating the OBD system can be achieved. A HIL simulation environment consisting of engine, aftertreatment, and basic vehicle models can be employed, providing the ability for software developers, calibration engineers, OBD experts, and test engineers to examine and validate both facets of OBD software: diagnostic monitors and diagnostic infrastructure (i.e., fault memory management).
Video

Spotlight on Design Insight: Using Turbocharging in New Engine Design

2016-04-03
In “Using Turbocharging in New Engine Design” (9:23), engineers from Schaeffler Group USA and McLaren Performance Tech explain what turbocharging is, and what it can do to improve both the power output of an engine and its fuel efficiency. Another engineer from the General Motors Powertrain group talks about how turbocharging was used in the new engine design for the Cadillac CT6. This episode highlights: The lessons learned from when turbocharging was first used to help heavy-duty trucks go uphill The experience acquired from car racing using turbo-charged engines The advantages of using turbo charging to decrease the size of engines without losing power output Also Available in DVD Format To subscribe to a full-season of Spotlight on Design, please contact SAE Corporate Sales: CustomerSales@sae.org or 1-888-875-3976.
Video

Spotlight on Design Insight: Sensors: Noise Avoidance and Cable Manufacturing

2015-05-07
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Extreme environment sensors require extreme environment cables that can reliably perform in temperatures up to 2300° F, withstand intense vibration, and have extraordinary strength. In the episode “Sensors: Noise Avoidance and Cable Manufacturing” (8:53), an engineer at Meggitt Sensing Systems demonstrates the intricate process of developing cable for sensors used in these situations.
Video

Future Development of EcoBoost Technology

2012-05-10
Combustion engines are typically only 20-30% efficient at part-load operating conditions, resulting in poor fuel economy on average. To address this, LiquidPiston has developed an improved thermodynamics cycle, called the High-Efficiency Hybrid Cycle (HEHC), which optimizes each process (stroke) of the engine operation, with the aim of maximizing fuel efficiency. The cycle consists of: 1) a high compression ratio; 2) constant-volume combustion, and 3) over-expansion. At a modest compression ratio of 18:1, this cycle offers an ideal thermodynamic efficiency of 74%. To embody the HEHC cycle, LiquidPiston has developed two very different rotary engine architectures ? called the ?M? and ?X? engines. These rotary engine architectures offer flexibility in executing the thermodynamics cycle, and also result in a very compact package. In this talk, I will present recent results in the development of the LiquidPiston engines. The company is currently testing 20 and 40 HP versions of the ?M?
Collection

Latest Advances for Commercial Vehicle Drivetrains, Powertrains, and Transmissions 2010

2010-09-27
This technical paper collection contains 53 technical papers. Topics covered include engine exhaust aftertreatment and integration; hybrid vehicle integration and optimization; powertrain and drivetrain NVH; advanced transmission and driveline component design; diesel engine system design; fuel economy; alternative fuels; and advanced engine component design.
X