Refine Your Search




Search Results

Training / Education

Failure Mode and Effect Analysis for Product/Process Development

The automotive industry is undergoing fierce competition globally. To increase competitiveness, automotive OEMs and suppliers are striving for improving quality and customer satisfaction, eliminating warranty, and reducing product development cycle time. This seminar introduces the participants to FMEA, an effective and powerful quality improvement tool. The seminar prepares the participants to effectively identify failure modes, determine effects, concisely define root causes of the failure modes, and successfully develop and implement the corrective actions.
Training / Education

Robust Design

Engineers are taught to create designs that meet customer specifications. When creating these designs, the focus is usually on the nominal values rather than variation. Robustness refers to creating designs that are insensitive to variability in the inputs. Much of the literature on robustness is dedicated to experimental techniques, particularly Taguchi techniques, which advocate using experiments with replications to estimate variation. This course presents mathematical formulas based on derivatives to determine system variation based on input variation and knowledge of the engineering function.
Training / Education

Engine Failure Investigation and Analysis

Engine failures can occur in a variety of equipment, vehicles, and applications. On occasion, a single vehicle type or equipment family will even experience multiple engine failures leading to the inevitable need to determine what the most likely cause of one or all of those failures was. This comprehensive seminar introduces participants to the methods and techniques used to understand the types of variables and inputs that can affect engine reliability and then determine the most likely cause of an individual engine or group of engine failures in the field.
Training / Education

Introduction to Contemporary Muffler Design Techniques

Most muffler design in the automotive industry is accomplished by using "cut-and-try" methods that rely on what has worked in the past and/or extensive full-scale testing on engines for validation. New computer software aimed at muffler design can shorten the design cycle and yield more effective results. This four hour seminar provides an introduction to the behavior of mufflers and silencers including a description of the two-port approach to muffler design. This seminar covers the acoustic simulation of muffler and silencer systems and the use of experimental methods to measure muffler performance.
Training / Education

Design and Process Failure Modes and Effects Analysis (FMEA)

This seminar covers the five types of FMEAs with emphasis on constructing Design and Process FMEAs. Each column of the FMEA document will be clearly explained using an actual FMEA example. The course covers various methods for identifying failure modes, effects and causes with special attention given to severity, occurrence, and detection tables and how to develop effective recommended actions strategies. Throughout the class, participants will be involved in exercises/actual projects that demonstrate and incorporate direct application of learned principles.
Training / Education

DFMEA Overview and Application

During this DFMEA Overview and Application course, participants will be introduced to important FMEA concepts, the basic theory behind the concepts, then discuss how these concepts can be applied to the customer's design FMEA activities. Participant activities include: reading assignments, group discussions, exercises, building Block Diagrams as a group, and beginning a DFMEA on a customer’s product.
Training / Education

Model-based Development of Embedded Software in Compliance with ISO 26262 – Challenges and Effective Solutions

Over the course of two days, participants in this training workshop will learn how to develop and safeguard safety-critical embedded software in serial projects with Simulink® in compliance with ISO 26262 (part 6). The training workshop will commence with a rundown of the ISO standard before directing attention towards the requirements of the ISO 26262 that pertain to model-based development. The training workshop will then look at the significance of the standard with regards to model-based development with Simulink®, as well as the requirements for model and software architecture in safety-critical software.
Training / Education

Fundamentals of Fatigue Analysis

Fatigue is a structural failure mode that must be recognized and understood to develop products that meet life cycle durability requirements. In the age of lightweighting, fatigue strength is an important vehicle design requirement as engineers struggle to meet stringent weight constraints without adversely impacting durability. This technical concept course introduces the fatigue failure mode and analysis methods. It explains the physics of material fatigue, including damage accumulation that may progress to product failure over time, and it provides the needed foundation to develop effective fatigue prediction capabilities.
Training / Education

Design Verification Plan & Report (DVP&R) - Overview and Application

In this one-day seminar on Design Verification Plan and Report Overview and Application students will be introduced to important concepts, the basic theory behind the concepts, and discuss how these concepts can be applied to the client's design reliability activities. Participant involvement will be maximized to demonstrate and reinforce the concepts through reading assignments, group discussions, and exercises where students will begin a DVP&R on a client product.
Training / Education

Basic Tire Mechanics and Applications

This course introduces basic tire mechanics, including tire construction components based on application type, required sidewall stamping in accordance with DoT/ECE regulations, tread patterns, regulatory and research testing on quality, tire inspections and basic tire failure identification. The course will provide you with information that you can use immediately on-the-job and apply to your own vehicle. This course is practical in nature and supplemented with samples and hands-on activities. It serves as a good primer for the in-depth SAE Tire Forensic Analysis course.
Training / Education

Tire Forensic Analysis

This course provides a detailed description of tire failure modes, their potential causes, identification, and the sometimes-subtle nuances that go along with determination of tire failure. In addition, proper inspection techniques of tires will be discussed and samples will be available to reinforce the concepts learned. The course is helpful for investigators and individuals who need to explore and explain tire failures and point out the failure contributing factors. The course will help to clarify failure root cause between tire production process deviation, tire design, and service application.
Training / Education

Solid Model Tolerancing 1-day

This course explains the fundamental definitions, concepts, and methods from the ASME Y14.41 Standard on Digital Product Definition Data Practices. Utilizing the expertise of world-renowned GD&T expert and former Chairman of the Y14.41 Committee, Alex Krulikowski, the course focuses on understanding the benefits of a math-based product development process. Newly acquired learning is reinforced throughout the class with numerous practice problems.
Training / Education

Introduction to Failure Mode and Effects Analysis for Product and Process

Failure Mode and Effects Analysis (FMEA) is a systematic method for preventing failure through the discovery and mitigation of potential failure modes and their cause mechanisms. Actions are developed in a team environment and address each high: severity, occurrence or detection ranking indicated by the analysis. Completed FMEA actions result in improved product performance, reduced warranty and increased product quality.
Training / Education

Model-Based Systems Engineering (MBSE)

As the complexity of products increases, traditional text-based systems engineering can no longer meet the needs. To solve the problem, Model-based Systems Engineering offers a unified communication platform among relevant staff by carrying out diagram-based unambiguous description, analysis and design for the demand, structure and behavior of complex systems in the form of a model. It, however, still remains a challenge to implement MBSE modeling and model-driven technology and application as well as its integration with the industry.
Training / Education

AS13004 Process Failure Mode and Effects Analysis (PFMEA) and Control Plans

In the Aerospace Industry there is a growing focus on Defect Prevention to ensure that quality goals are met. Process Failure Mode & Effects Analysis (PFMEA) and Control Plan activities described in AS13004 are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Process Flow Diagrams, Process Failure Mode & Effects Analysis (PFMEA) and Control Plans as described in AS13004. It will show the links to other quality tools such as Design FMEA, Characteristics Matrix and Measurement Systems Analysis (MSA).
Training / Education

PFMEA and the Control Plan - Overview and Application

The Process FMEA and Control Plan program introduces the basic concepts behind this important tool and provides training in how to conduct an effective PFMEA. First, the course explains what a PFMEA is and how it improves the long-term performance of your products, services and related processes by addressing process related failures. The role of the PFMEA in the overall framework of Quality Management System Requirements is explained as well as the role of the PFMEA in the Advanced Product Quality Planning (APQP) process. Additionally, the differences and relationships between the DFMEA and PFMEA are well defined.

Multi-Dimensional Engine Modeling, 2018

This collection covers advances in the development and application of models and tools involved in multi-dimensional engine modeling: advances in chemical kinetics, combustion and spray modeling, turbulence, heat transfer, mesh generation, and approaches targeting improved computational efficiency. Papers employing multi-dimensional modeling to gain a deeper understanding of processes related to turbulent transport, transient phenomena, and chemically reacting, two-phase flows are included in this collection.

Vehicle Dynamics, Stability and Control, 2017

This technical paper collection is focused on vehicle dynamics and controls using modeling and simulation, and experimental analysis of passenger cars, heavy trucks, and wheeled military vehicles. The papers address active and passive safety systems to mitigate rollover, yaw instability and braking issues; driving simulators and hardware-in-the-loop systems; suspension kinematics and compliance, steering dynamics, advanced active suspension technologies; and tire force and moment mechanics.

Vehicle Aerodynamics, 2011

The 28 papers in this technical paper collection cover the aerodynamics development of vehicles or vehicle subsystems. Many papers discuss the utilization of both experimental and computational tools during the development phase.

Kinetically Controlled CI Combustion (including HCCI), 2012

The 32 papers in this technical paper collection discuss kinetically controlled CI combustion (including HCCI). Topics covered include 2-stroke, mode switching, expansion of low and high loads, valve overlaps and boosting, thermal stratification, cyclic variability and alternative fuels, control and modeling, and more. The 32 papers in this technical paper collection discuss kinetically controlled CI combustion (including HCCI). Topics covered include 2-stroke, mode switching, expansion of low and high loads, valve overlaps and boosting, thermal stratification, cyclic variability and alternative fuels, control and modeling, and more.