Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Fundamentals of Vehicle Suspension Design

2019-08-21
The design and development of vehicle suspensions significantly influences vehicle handling and ride comfort. Suspension system design excellence follows the basic laws of physics using design synthesis techniques, a methodical process for suspension geometry development. Suspension geometry is the foundation of vehicle performance from which high-confidence suspension components and tunings can be developed. Suspension component design continues to move toward mass and cost efficient designs with high levels of stiffness being essential to achieving design requirements.
Training / Education

Applied Vehicle Dynamics

2019-05-20
While a variety of new engineering methods are becoming available to assist in creating optimal vehicle designs, subjective evaluation of vehicle behavior is still a vital tool to deliver desired braking, handling, and other dynamic response characteristics. In order to better prepare today"s engineer for this task, this course offers twelve modules devoted to key the fundamental principles associated with longitudinal and lateral vehicle dynamics.
Training / Education

Vehicle Dynamics for Passenger Cars and Light Trucks

2019-04-08
This seminar will present an introduction to Vehicle Dynamics from a vehicle system perspective. The theory and applications are associated with the interaction and performance balance between the powertrain, brakes, steering, suspensions and wheel and tire vehicle subsystems. The role that vehicle dynamics can and should play in effective automotive chassis development and the information and technology flow from vehicle system to subsystem to piece-part is integrated into the presentation. Governing equations of motion are developed and solved for both steady and transient conditions.
Standard

Leaf Springs for Motor Vehicle Suspension - Made to Customary U.S. Units

2016-04-05
CURRENT
J510_201604
NOTE—For leaf springs made to metric units, see SAE J1123. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully addressed in HS-J788, SAE Information Report, Manual on Design and Application of Leaf Springs, which is available from SAE Headquarters.
Standard

Pneumatic Spring Terminology

2016-04-01
CURRENT
J511_201604
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

PNEUMATIC SPRING TERMINOLOGY

1989-06-01
HISTORICAL
J511_198906
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

Leaf Springs for Motor Vehicle Suspension-Made to Customary U.S. Units

1985-05-01
HISTORICAL
J510_198505
This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully addressed in HS-J788, SAE Information Report, Manual on Design and Application of Leaf Springs, which is available from SAE Headquarters. NOTE: For leaf springs made to metric units, see SAE J1123.
Standard

LEAF SPRINGS FOR MOTOR VEHICLE SUSPENSION—MADE TO CUSTOMARY U.S. UNITS

1992-11-01
HISTORICAL
J510_199211
NOTE—For leaf springs made to metric units, see SAE J1123. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully addressed in HS-J788, SAE Information Report, Manual on Design and Application of Leaf Springs, which is available from SAE Headquarters.
Standard

Automotive Lubricating Greases

2005-07-14
CURRENT
J310_200507
This SAE Recommended Practice was developed by SAE, and the section “Standard Classification and Specification for Service Greases” cooperatively with ASTM, and NLGI. It is intended to assist those concerned with the design of automotive components, and with the selection and marketing of greases for the lubrication of certain of those components on passenger cars, trucks, and buses. The information contained herein will be helpful in understanding the terms related to properties, designations, and service applications of automotive greases.
Standard

Conical Spring Washers

1976-02-01
HISTORICAL
J773B_197602
This SAE Standard covers dimensional, material, and general specifications and methods of test for two types of general purpose conical spring washers, designated type L and type H, for use as loose washers over screws and bolts, and also for use as pre-assembled washers in screw and washer assemblies. Both the type L and type H washers are available in three washer series (narrow, regular and wide), having varied proportions designed to fulfill specific application requirements for load distribution. Where so specified by the user, washers shall be supplied with peripheral teeth. All sizes and types of washers specified in this standard are not necessarily stock production items. Users should consult with manufacturers concerning availability.
Standard

Considerations for Suspension Modification

1999-06-01
CURRENT
J2492_199906
The scope of this document is limited specifically to the following types of passenger vehicles: automobiles, light trucks, and sport/utility vehicles. This document addresses modifications as they apply to legal use of the vehicle, and examines suspension modification as it applies to stock (as manufactured) ride height, and changed (raised or lowered) ride height. Note that modifications of ride height are considered, exclusive of wheel and/or tire modifications, which can also have potentially serious side effects, and are outside the scope of this document.
Standard

Stainless Steel, SAE 30302, Spring Wire and Springs

1988-12-01
HISTORICAL
J230_198812
This SAE Recommended Practice covers a high-strength corrosion-resisting steel wire, uniform in mechanical properties, intended for the manufacture of springs and wire forms. It covers processing requirements of springs and forms fabricated from this wire.
Standard

Stainless Steel, SAE 30302, Spring Wire and Springs

2016-04-05
CURRENT
J230_201604
This SAE Recommended Practice covers a high-strength corrosion-resisting steel wire, uniform in mechanical properties, intended for the manufacture of springs and wire forms. It also covers processing requirements of springs and forms fabricated from this wire.
Standard

STAINLESS STEEL, SAE 30302, SPRING WIRE AND SPRINGS

1994-06-01
HISTORICAL
J230_199406
This SAE Recommended Practice covers a high-strength corrosion-resisting steel wire, uniform in mechanical properties, intended for the manufacture of springs and wire forms. It also covers processing requirements of springs and forms fabricated from this wire.
Standard

Nut and Conical Spring Washer Assemblies

1998-05-01
HISTORICAL
J238_199805
This SAE Standard covers general, dimensional data, and methods of test for two types of general purpose nut and conical spring washer assemblies, designated Type LN and Type HN, intended for mass production and other operations where speed and convenience are paramount factors.
Standard

Internal Combustion Engines--Piston Rings Coil Spring Loaded Oil Control Rings

2008-06-30
CURRENT
J2003_200806
This SAE Standard is equivalent to ISO Standard 6626. Differences, where they exist, are shown in the appendix with associated rationale. This document specifies the essential dimensions of piston ring types DSF-C, DSF-CNP, SSF, GSF, DSF, DSF-NG, and SSF-L coil spring loaded oil control rings. For the cast iron part the recommended material is class 10 according to SAE J1590. For special applications material classes 20 to 50 may be used. Variation in face design and spring groove from these may be used, as recommended by individual manufacturers, in plain or chromed versions. The tangential forces of coil spring loaded oil control rings can be varied over a wide range. Explanations and recommendations are given in Section 6. The normal range for axial width of coil spring loaded oil control rings (3 to 8 mm inclusive) is divided into 0.5 or 1.0 mm steps.
X