Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Electrification of Vehicles at Nissan Motor Company to achieve Zero Tailpipe Emissions

2012-03-29
Nissan Motor Company has recently released the �Nissan Green Program 2016� which is a six-year action plan embodying the company�s environmental philosophy: Symbiosis of People, Vehicles and Nature. One of the key activities of this Program is the successful penetration of Zero-Emission Vehicles into the market which includes electric vehicle (EV) cumulative sales of 1.5M units with our Alliance partner Renault, introduction of a fuel cell electric vehicle (FCEV) into the market, taking a global leadership in supplying batteries for electric drive and creating zero-emission societies. This presentation will highlight some of these key activities. Presenter Kev Adjemian, Nissan Technical Center NA
Video

Development and Demonstration of a Low Emissions Four-Stroke Outboard Marine Engine Utilizing Catalyst Technology

2012-06-18
A conceptual project aimed at understanding the fundamental design considerations concerning the implementation of catalyst systems on outboard marine engines was carried out by Mercury Marine, with the support of the California Air Resources Board. In order to keep a reasonable project scope, only electronic fuel injected four-stroke outboards were considered. While they represent a significant portion of the total number of outboard engines sold in the United States, carbureted four-strokes and direct injected two-strokes pose their own sets of design constraints and were considered to be outside the scope of this study. Recently, three-way catalyst based exhaust emissions aftertreatment systems have been introduced into series production on sterndrive and inboard marine spark ignition engines in North America. The integration of catalyst systems on outboards is much more challenging than on these other marine propulsion alternatives.
Journal Article

Treatment of Vehicle Emissions from the Combustion of E85 and Gasoline with Catalyzed Hydrocarbon Traps

2009-04-20
2009-01-1080
Ethanol has been gaining attention as a partial substitute in North American pump gasoline in amounts up to 85% ethanol and 15% gasoline, or what is commonly known as “E85”. The problems with E85 fuel for cold start emissions relative to gasoline fuel are the lower energy density and vapor pressure for combustion. Each contributes to excess E85 fuel injected during cold start for comparable combustion quality and drivability to gasoline. The excess emissions occur before the first three-way catalyst (TWC) converter is warmed-up and active for engine-out exhaust conversion. The treatment of non-methane organic gas (NMOG) emissions from the combustion of E85 and gasoline was evaluated using several different zeolite based hydrocarbon (HC) traps coated with different precious metal loadings and ratios. These catalyzed HC traps were evaluated in a flow reactor and also on a gasoline Partial Zero Emissions Vehicle (PZEV) with experimental flexible fuel capability.
Journal Article

Proof-of-Principle Investigation into the Use of Custom Rapid Aging Procedures to Evaluate and Demonstrate Catalyst Durability

2010-10-25
2010-01-2269
The application of accelerated catalyst aging procedures on an engine dynamometer test bed for the purpose of demonstrating catalyst durability is examined. A proof-of-principle approach is followed using catalysts from vehicles certified to U.S. Tier 2 Bin 4 and California SULEV 2 levels. Accelerated durability demonstration methods based upon conventional fuel cut cycles were employed to age catalysts to levels predicted by quantification of thermal catalyst bed severity on the Standard Road Cycle (SRC) relative to the fuel cut aging cycle using the Bench Aging Time (BAT) equation. Emissions deterioration on the accelerated aging cycle is compared to the automobile manufacturers' certification values and to whole vehicle emissions performance results from several different in-use vehicle fleets. The influence of technology on whole vehicle emissions levels and deterioration characteristics is also evaluated.
Journal Article

Achieving an 80% GHG Reduction by 2050 in California's Passenger Vehicle Fleet: Implications for the ZEV Regulation

2010-10-19
2010-01-2306
In recognizing the potential for large, damaging impacts from climate change, California enacted Executive Order S-03-05, requiring a reduction in statewide greenhouse gas (GHG) emissions to 80% below 1990 levels by 2050. Given that the transportation light-duty vehicle (LDV) segment accounts for 28% of the state's GHG emissions today, it will be difficult to meet the 2050 goal unless a portfolio of near-zero carbon transportation solutions is pursued. Because it takes decades for a new propulsion system to capture a large fraction of the passenger vehicle market due to vehicle fleet turn-over rates, it is important to accelerate the introduction of these alternatives to ensure markets enter into early commercial volumes (10,000s) between 2015 and 2020. This report summarizes the results and conclusions of a modeling exercise that simulated GHG emissions from the LDV sector to 2050 in California.
Journal Article

Review of Diesel Emissions and Control

2010-04-12
2010-01-0301
This review summarizes the latest developments in diesel emissions regarding regulations, engines, NOx (nitrogen oxides) control, particulate matter (PM) reductions, and hydrocarbon (HC) and CO oxidation. Regulations are advancing with proposals for PN (particle number) regulations that require diesel particulate filters (DPFs) for Euro VI in 2013-14, and SULEV (super ultra low emission vehicle) fleet average light-duty (LD) emissions likely to be proposed in California for ~2017. CO₂ regulations will also impact diesel engines and emissions, probably long into the future. Engine technology is addressing these needs. Heavy-duty (HD) research engines show 90% lower NOx at the same PM or fuel consumption levels as a reference 2007 production engine. Work is starting on HD gasoline engines with promising results. In light duty (LD), engine downsizing is progressing and deNOx is emerging as a fuel savings strategy.
Journal Article

Development of Exhaust and Evaporative Emissions Systems for Toyota THS II Plug-in Hybrid Electric Vehicle

2010-04-12
2010-01-0831
Exhaust and evaporative emissions systems have been developed to match the characteristics and usage of the Toyota THS II plug-in hybrid electric vehicle (PHEV). Based on the commercially available Prius, the Toyota PHEV features an additional external charging function, which allows it to be driven as an electric vehicle (EV) in urban areas, and as an hybrid electric vehicle (HEV) in high-speed/high-load and long-distance driving situations. To reduce exhaust emissions, the conventional catalyst warm up control has been enhanced to achieve emissions performance that satisfies California's Super Ultra Low Emissions Vehicle (SULEV) standards in every state of battery charge. In addition, a heat insulating fuel vapor containment system (FVS) has been developed using a plastic fuel tank based on the assumption that such a system can reduce the diffusion of vapor inside the fuel tank and the release of fuel vapor in to the atmosphere to the maximum possible extent.
Journal Article

Diesel Cold-Start Emission Control Research for 2015-2025 LEV III Emissions - Part 2

2014-04-01
2014-01-1552
The diesel engine can be an effective solution to meet future greenhouse gas and fuel economy standards, especially for larger segment vehicles. However, a key challenge facing the diesel is the upcoming LEV III and Tier 3 emission standards which will require significant reductions in hydrocarbon (HC) and oxides of nitrogen (NOx) emissions. The challenge stems from the fact that diesel exhaust temperatures are much lower than gasoline engines, so the time required to achieve effective emissions control after a cold-start with typical aftertreatment devices is considerably longer. To address this challenge, a novel diesel cold-start emission control strategy was investigated on a 2L class diesel engine. This strategy combines several technologies to reduce tailpipe HC and NOx emissions before the start of the second hill of the FTP75. The technologies include both engine tuning and aftertreatment changes.
Journal Article

Development of Fuel Filler Tube with Enhanced Adhesion Coating System on Ferrite Stainless Steel for LEV III

2015-04-14
2015-01-0730
A pre-treatment technique for improving coating adhesion on stainless steel has been developed. This method dramatically enhances the adhesion between the stainless steel and the coating by pre-treating the stainless steel with a known nickel strike plating for a short period of time. Furthermore, when this process was applied to stainless fuel filler pipes to improve corrosion resistance, layout restrictions and chipping covers became unnecessary, costs were reduced, and vehicle weight was lowered.
Technical Paper

Methodology to Simulate Adsorption and Desorption Phenomena of Gasoline Fuel Vapour in Activated-Carbon Canister to Meet Post-EU6 and US EPA Global Emission Norms

2021-09-15
2021-28-0131
This paper covers the mathematical modeling of governing equations for the coupled heat and mass transfer phenomena during adsorption and desorption. Also the main focus is given on the methodology for numerical simulation for solving these partial differential equations for carbon canister. A comprehensive literature review is presented to summarize the target requirements of allowed evaporative emission level of gasoline vapour in grams per day based on global standards like, EU6, EPA stage II enhanced, CARB LEVII, PZEV and SULEV. In order to meet these stringent emission norms, presence of carbon canister is mandatory. The simulation results are compared for the gasoline vehicle application at various climatic temperature conditions in India, in which the canister sizing vs allowable emission targets are summarized.
Technical Paper

Effect of North American Certification Test Fuels on Emissions from On-Road Motorcycles

2021-09-21
2021-01-1225
Chassis dynamometer tests were conducted on three Class III on-highway motorcycles produced for the North American market and equipped with advanced emission control technologies in order to inform emissions inventories and compare the impacts of existing Tier 2 (E0) fuel with more market representative Tier 3 and LEV III certification fuels with 10% ethanol. For this study, the motorcycles were tested over the US Federal Test Procedure (FTP) and the World Motorcycle Test Cycle (WMTC) certification test cycles as well as a sample of real-world motorcycle driving informally referred to as the Real World Driving Cycle (RWDC). The primary interest was to understand the emissions changes of the selected motorcycles with the use of certification fuels containing 10% ethanol compared to 0% ethanol over the three test cycles.
Journal Article

Assessment of the Influence of GDI Injection System Parameters on Soot Emission and Combustion Stability through a Numerical and Experimental Approach

2015-09-06
2015-24-2422
The next steps of the current European and US legislation, EURO 6c and LEV III, and the incoming new test cycles will impose more severe restrictions on pollutant emissions for Gasoline Direct Injection (GDI) engines. In particular, soot emission limits will represent a challenge for the development of this kind of engine concept, if injection and after-treatment systems costs are to be minimized at the same time. The paper illustrates the results obtained by means of a numerical and experimental approach, in terms of soot emissions and combustion stability assessment and control, especially during catalyst-heating conditions, where the main soot quantity in the test cycle is produced. A number of injector configurations has been designed by means of a CAD geometrical analysis, considering the main effects of the spray target on wall impingement.
Journal Article

Impact of SCR Integration on N2O Emissions in Diesel Application

2015-04-14
2015-01-1034
Significant reduction in Nitrogen Oxide (NOx) emissions will be required to meet LEV III/Tier III Emissions Standards for Light Duty Diesel (LDD) passenger vehicles. As such, Original Equipment Manufacturers (OEMs) are exploring all possible aftertreatment options to find the best balance between performance, durability and cost. The primary technology adopted by OEMs in North America to achieve low NOx levels is Selective Catalytic Reduction (SCR). The critical parameters needed for SCR to work properly are: an appropriate reductant such as ammonia (NH3) provided as Diesel Exhaust Fluid (DEF), which is an aqueous urea solution 32.5% concentration in weight with water (CO(NH2)2 + H2O), optimum operating temperatures, and optimum nitrogen dioxide (NO2) to NOx ratios (NO2/NOx). The NO2/NOx ratio is most influenced by Precious Group Metals (PGM) containing catalysts upstream of the SCR catalyst.
Journal Article

Evaluation of PM Measurement Precision and the Quivalency of the Single and Three Filter Sampling Methods for LEV III FTP Standards

2016-01-15
2015-01-9045
Present motor vehicle particulate matter (PM) emission measurement regulations (Code of Federal Regulations (CFR) 40 Part 1065, 1066) require gravimetric determination of PM mass collected onto filter media from dilute exhaust. To improve the current sampling and measurement procedures for TIER 3 PM emissions standard of 3 mg/mile, CFR part 1066 adopted five alternative PM sampling options. One option of great interest is sampling the entire test using a single flow-weighed filter rather than the conventional three-filter (one filter per test phase) approach. The single filter method could lessen the time needed for gravimetric determination by reducing the quantity of filters used for a test and possibly reduce the uncertainty in gravimetric measurements, particularly at sub 1 mg/mile PM levels. This study evaluates the single filter and, to a limited extent, the 2-filter alternatives adopted in 40 CFR Part 1066.
Journal Article

Development Solar Charging System of Vehicle

2017-03-28
2017-01-1598
Fuel consumption and CO2 emission regulations for vehicles, such as the Zero Emission Vehicle (ZEV) Regulation, motivate renewable energy technologies in the automotive industry. Therefore, the automotive industry is focused on adopting solar charging systems. Some vehicles have adopted solar energy to power the ventilation system, but these vehicles do not use solar energy to power the drivetrain. One important issue facing the design of solar charging systems is the low power generated by solar panels. Compared to solar panels for residential use, solar panels for vehicles can’t generate as much power because of size and weight limitations. Also, the power generated by solar panels can be extremely affected depending on differences in solar radiation among the cells. Therefore, Toyota has developed a solar charging system that can use solar energy for driving the Prius PHV. This system can efficiently charge the hybrid battery with the low power generated by the solar panel.
Journal Article

Development and Testing of the Ultera® Dual Stage Catalyst System on Gasoline-Fueled Light Duty Vehicles (LDV’s)

2017-03-28
2017-01-0920
All vehicles sold today are required to meet emissions standards based on specific driving cycles. Emissions standards are getting tighter and the introduction of real driving tests is imminent, potentially calling for improved aftertreatment systems. A dual stage catalyst system, with exhaust temperature control, can provide a robust solution to meet challenging modes of operation such as rapid acceleration and other heavy-duty transients. The Ultera® technology, developed and successfully implemented on stationary natural gas CHP (Combined Heat and Power) engines, introduces a second stage catalyst downstream of a three-way catalyst. Air is injected between the two stages to provide oxygen required for the second stage reaction that removes additional CO and NMOG. Critical to the process is to avoid the reformation of NOx.
Journal Article

Aftertreatment Architecture and Control Methodologies for Future Light Duty Diesel Emission Regulations

2017-03-28
2017-01-0911
Future light duty vehicles in the United States are required to be certified on the FTP-75 cycle to meet Tier 3 or LEV III emission standards [1, 2]. The cold phase of this cycle is heavily weighted and mitigation of emissions during this phase is crucial to meet the low tail pipe emission targets [3, 4]. In this work, a novel aftertreatment architecture and controls to improve Nitrogen Oxides (NOx) and Hydrocarbon (HC) or Non Methane Organic gases (NMOG) conversion efficiencies at low temperatures is proposed. This includes a passive NOx & HC adsorber, termed the diesel Cold Start Concept (dCSC™) catalyst, followed by a Selective Catalytic Reduction catalyst on Filter (SCRF®) and an under-floor Selective Catalytic Reduction catalyst (SCR). The system utilizes a gaseous ammonia delivery system capable of dosing at two locations to maximize NOx conversion and minimize parasitic ammonia oxidation and ammonia slip.
Journal Article

Low Cost LEV-III, Tier-III Emission Solutions with Particulate Control using Advanced Catalysts and Substrates

2016-04-05
2016-01-0925
A production calibrated GTDI 1.6L Ford Fusion was used to demonstrate low HC, CO, NOx, PM (particulate mass), and PN (particulate number) emissions using advanced catalyst technologies with newly developed high porosity substrates and coated GPFs (gasoline particulate filters). The exhaust system consisted of 1.2 liters of TWC (three way catalyst) in the close-coupled position, and 1.6L of coated GPF in the underfloor position. The catalysts were engine-aged on a dynamometer to simulate 150K miles of road aging. Results indicate that ULEV70 emissions can be achieved at ∼$40 of PGM, while also demonstrating PM tailpipe performance far below the proposed California Air Resources Board (CARB) LEV III limit of 1 mg/mi. Along with PM and PN analysis, exhaust system backpressure is also presented with various GPF designs.
Technical Paper

Energy Management of Dual Energy Source of Hydrogen Fuel Cell Hybrid Electric Vehicles

2020-04-14
2020-01-0595
With the growing shortage of oil resources and the increasingly strict environmental regulations, countries are vigorously developing new energy vehicles, and as a truly zero-emission vehicle in the application, fuel cell electric vehicles can not only completely replace gasoline cars in term of fuel, but also have the advantages of high energy conversion efficiency, short hydrogenation time and long driving range. For Fuel Cell Hybrid Electric Vehicle (FCEV), and the Energy Management Control Strategy is the "core" of the whole vehicle control system, which has a direct and significant effect on the power and economy of the vehicle. In this paper, the "dual energy source system" composed of fuel cell and power battery is taken as the research object.
Journal Article

Assessment of Optimization Methodologies to Study the Effects of Bowl Geometry, Spray Targeting and Swirl Ratio for a Heavy-Duty Diesel Engine Operated at High-Load

2008-04-14
2008-01-0949
In the present paper optimization tools are used to recommend low-emission engine combustion chamber designs, spray targeting and swirl ratio levels for a heavy-duty diesel engine operated at high-load. The study identifies aspects of the combustion and pollution formation that are affected by mixing processes, and offers guidance for better matching of the piston geometry with the spray plume geometry for enhanced mixing. By coupling a GA (genetic algorithm) with the KIVA-CFD code, and also by utilizing an automated grid generation technique, multi-objective optimizations with goals of low emissions and fuel economy were achieved. Three different multi-objective genetic algorithms including a Micro-Genetic Algorithm (μGA), a Nondominated Sorting Genetic Algorithm II (NSGA II) and an Adaptive Range Multi-Objective Genetic Algorithm (ARMOGA) were compared for conducting the optimization under the same conditions.
X