Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Emission Tests of Diesel Fuel with NOx Reduction Additives

In this paper results are given from single-cylinder, steady-state engine tests using the Texaco Diesel Additive (TDA) as an in-fuel emission reducing agent. The data include NOx, total unburned hydrocarbons, indicated specific fuel consumption, and heat release analysis for one engine speed (1500 RPM) with two different loads (Φ ≈ 0.3, IMEP = 0.654 MPa and Φ ≈ 0.5, IMEP = 1.006 MPa) using the baseline fuel and fuels with one percent and five percent additive by weight. The emissions were measured in the exhaust stream of a modified TACOM-LABECO single cylinder engine. This engine is a 114 mm x 114 mm (4.5″ x 4.5″) open chamber low swirl design with a 110.5 MPa (16,000 psi) peak pressure Bosch injector. The injector has 8 holes, each of 0.2 mm diameter. The intake air was slightly boosted (approximately 171 kPa (25 psia)) and slightly heated (333 K (140 °F)). In previous research on this engine the emissions, including soot, were well documented.
Technical Paper

Aldehyde and Unburned Fuel Emission Measurements from a Methanol-Fueled Texaco Stratified Charge Engine

A Texaco L-163S TCCS (Texaco Controlled Combustion System) engine was operated with pure methanol to investigate the origin and mechanism of unburned fuel (UBF) and formaldehyde emissions. The effects of engine load, speed and coolant temperature on the exhaust emissions were studied using both continuous and time-resolved sampling methods. Within the range studied, increasing the engine load resulted in a decrease of the exhaust UBF emissions and an increase in the formaldehyde emissions. Engine speed had little effect on both UBF and formaldehyde emissions. Decreasing the engine coolant temperature from 85°C to 45°C caused the exhaust UBF emissions to approximately double and the formaldehyde emission to increase approximately 20 percent. It is hypothesized that both fuel impingement and spray tailing are responsible for the high UBF emissions. In-cylinder formation of formaldehyde was found to be the major source of the exhaust aldehyde emissions in this experiment.
Technical Paper

Ethanol Fumigation of a Turbocharged Diesel Engine

Ethanol has been injected through an atomizing nozzle into the intake manifold of a four cylinder turbocharged diesel engine. It was found that to avoid liquid droplet impingement on the compressor blades the injector needed to be located downstream of the compressor, in the high pressure section of the inlet manifold. 160 proof and 200 proof alcohols were investigated with a series of percentage substitutions at different speeds and loads. The fumigation of ethanol resulted in a slight improvement in thermal efficiency at high loads and a small reduction at light loads. The ignition delay and rate of pressure rise also increased significantly when ethanol was added to the engine. A change in the proof of ethanol from 160 to 200 did not produce any noticeable change in engine performance. Emission measurements were also made and are discussed. The problem of obtaining uniform cylinder to cylinder distribution of alcohol has been encountered.
Technical Paper

Effects of DPF Washcoat Variations on DPF Active Regeneration Characteristics

Three Cordierite diesel particulate filters (DPF) with variations in the washcoat† (bare, washcoat-only, and catalyzed washcoat) were filled with equal amounts of PM (∼2 g/l) from a single steady-state engine operating condition (30% load, 1800 rpm). Two regeneration systems were used: an electrical furnace to extract the kinetic parameters by performing Temperature Programmed Oxidation (TPO) experiments and an inline burner to study how DPF washcoat variations affect active regeneration performance. Detailed emissions measurements were performed upstream and downstream of the DPF during the filtration and regeneration processes to quantify DPF filtration and regeneration performance. These measurements included gaseous emission, PM mass concentration, and particle size distribution.
Journal Article

Development of the Diesel Exhaust Filtration Analysis System (DEFA)

The development of the Diesel Exhaust Filtration Analysis system (DEFA), which utilizes a rectangular wafer of the same substrate material as used in a full-scale Diesel Particulate Filter (DPF), is presented in this paper. Washcoat variations of the wafer substrate (bare, washcoat, and catalyzed washcoat) were available for testing. With this setup, the complications of flow and temperature distribution that arise in the full-scale DPF can be significantly minimized while critical parameters that affect the filtration performance can be fully controlled. Cold flow experiments were performed to test the system's reliability, and determine the permeability of each wafer type. A Computational Fluid Dynamics (CFD) package was utilized to ensure the flow uniformity inside the filter holder during the cold flow test.