Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

EIC System-integrated Thermal Management Technologies

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). Energy conservation and emission reduction has always been a goal for many countries. Especially since the introduction of China VI Vehicle Emission Standards and CAFC & NEV Credit Regulation, the output of NEVs has grown explosively while accompanied by a large number of car fire burning problems and complaints about the shortening of proclaimed electric-only driving range.
Standard

Training Program Guidelines for Deicing/Anti-Icing of Aircraft on Ground-Digital Annex

2019-09-11
CURRENT
ARP5149CDA
This Digital Annex (DA) contains the current, full-PDF version of ARP5149B, Training Program Guidelines for Deicing/Anti-Icing of Aircraft on Ground, as well as .jpeg format files of Appendix D, Application Guidelines Configuration, Critical Component, and Spray Area Diagrams for Aircraft. The .jpeg diagram files may be used by purchasers in accordance with the terms of the included license agreement.
Video

General Motors Hybrid Systems and New e-Assist Powertrain

2011-11-18
Hybrid systems have been available for several years now, and offer customers a decrease in fuel consumption and CO2 emissions at an incremental price. Hybrids, in some cases, have offered improved other customer benefits such as reduced noise, vibration and harshness or better acceleration and the satisfaction of increased societal benefit. Sometimes the vehicle utility is compromised by the volume dedicated to energy storage systems. Several hybrid architecture arrangements exist in the market, and offer various levels of hybrid feature. But considering acquisition cost and operating expense, most hybrid vehicles have not offered a direct total cost advantage when compared to non-hybrids. GM's new e-Assist system is highly integrated with the engine and transmission functionality, and takes advantage of the highest value fuel economy enablers available with light electrification.
Video

Neural Network-based Optimal Control for Advanced Vehicular Thermal Management Systems

2011-12-05
Advanced vehicular thermal management system can improve engine performance, minimize fuel consumption, and reduce emissions by harmoniously operating computer-controlled servomotor components. In this paper, a neural network-based optimal control strategy is proposed to regulate the engine temperature through the advanced cooling system. Presenter Asma Al Tamimi, Hashemite University
Video

Real time Renewable Energy Availability for EV Charging

2012-03-29
Main topics are the development and the build-up of an 18ton hybrid truck with a parallel hybrid drivetrain. With this truck it is possible to drive up to 3 kilometers in the pure electric driving mode. Presenter Andreas Eglseer, Engineering Center Steyr GmbH & Co. KG
Video

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-11-29
Battery Electric Vehicles and Extended Range Electric Vehicles, like the Chevrolet Volt, can use electrical energy from the Grid to meet the majority of a driver�s transportation needs. This has the positive societal effects of displace petroleum consumption and associated pollutants from combustion on a well to wheels basis, as well as reduced energy costs for the driver. CO2 may also be lower, but this depends upon the nature of the grid energy generation. There is a mix of sources � coal-fired, gas -fired, nuclear or renewables, like hydro, solar, wind or biomass for grid electrical energy. This mix changes by region, and also on the weather and time of day. By monitoring the grid mix and communicating it to drivers (or to their vehicles) in real-time, electrically driven vehicles may be recharged to take advantage of the lowest CO2, and potentially lower cost charging opportunities.
Video

Toyota's Comprehensive Environmental Technology: Providing Choices for Sustainable Mobility

2012-03-31
Toyota is committed to the development of advanced powertrains to help address concerns with future oil supplies, the impacts of increased carbon dioxide emissions, and air pollution. Towards that end Toyota is planning to bring to market in 2012 a plug-in hybrid vehicle, a short range electric vehicle, a long range electric vehicle and in the 2015 timeframe hydrogen powered fuel cell vehicle. This presentation will focus on our electric vehicle plans and the challenges with bringing electric vehicle to the market. From the 2010 Alt Fuels Study, Toyota has identified that two key barriers for EV adoption are the times to charge the vehicle, and electricity cost. The study finds that the current infrastructure could be sufficient for most driving needs but EV drivers will still need to alter their driving habits slightly.
Video

1D Simulation and Experimental Analysis of a Turbocharger Compressor for Automotive Engines under Unsteady Flow Conditions

2012-02-15
Zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine breathing and boosting; SI combustion and emissions; CI combustion and emissions; fundamentals of engine thermodynamics; thermal management; mechanical and lubrication systems; system level models for controls; system level models for vehicle fuel economy and emissions predictions. Presenter Fabio Bozza, Universita di Napoli
Video

Teardown-Based Cost Assessment for Use in Setting Greenhouse Gas Emissions Standards

2012-06-18
The U.S. Environmental Protection Agency (EPA) contracted with FEV, Inc. to estimate the per-vehicle cost of employing selected advanced efficiency-improving technologies in light-duty motor vehicles. The development of transparent, reliable cost analyses that are accessible to all interested stakeholders has played a crucial role in establishing feasible and cost effective standards to improve fuel economy and reduce greenhouse gas (GHG) emissions. The FEV team, together with engineering staff from EPA's National Vehicle and Fuel Emissions Laboratory, and FEV's subcontractor, Munro & Associates, developed a robust costing methodology based on tearing down, to the piece part level, relevant systems, sub-systems, and assemblies from vehicles ?with and without? the technologies being evaluated.
Video

Impact of Biodiesel on Particle Emissions and DPF Regeneration Management in a Euro5 Automotive Diesel Engine

2012-06-18
Biofuel usage is increasingly expanding thanks to its significant contribution to a well-to-wheel (WTW) reduction of greenhouse gas (GHG) emissions. In addition, stringent emission standards make mandatory the use of Diesel Particulate Filter (DPF) for the particulate emissions control. The different physical properties and chemical composition of biofuels impact the overall engine behaviour. In particular, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value (LHV). More specifically, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value, respectively. The particle emissions, in fact, are lower mainly because of the higher oxygen content. Subsequently less frequent regenerations are required.
Video

Development of DPF/SCR System for Heavy Duty Diesel Engine

2012-06-15
Manganese oxides show high catalytic activity for CO and HC oxidation without including platinum group metals (PGM). However, there are issues with both thermal stability and resistance to sulfur poisoning. We have studied perovskite-type YMnO3 (YMO) with the aim of simultaneously achieving both activity and durability. This paper describes the oxidation activity of PGM-free Ag/i-YMO, which is silver supported on improved-YMO (i-YMO). The Ag/i-YMO was obtained by the following two methods. First, Mn4+ ratio and specific surface area of YMO were increased by optimizing composition and preparation method. Second, the optimum amount of silver was supported on i-YMO. In model gas tests and engine bench tests, the Ag/i-YMO catalyst showed the same level of activity as that of the conventional Pt/?-Al2O3 (Pt = 3.0 g/L). In addition, there was no degradation with respect to either heat treatment (700°C, 90 h, air) or sulfur treatment (600°C to 200°C, total 60 h, 30 ppm SO2).
Video

Reduction of CO2 Emissions using Variable Compression Ratio MCE-5 VCRi Technology - Facts & Prospects

2012-05-10
Downsizing and downspeeding are two efficient strategies to reduce vehicles CO2 emission, provided that high BMEP can be achieved at any engine speed under clean, safe, stable and efficient combustion. With a 6:1 minimum compression ratio, the MCE-5 VCRi achieves 40 bar peak BMEP at 1200 rpm with no irregular combustion. If peak BMEP is maintained below 35 bar, fuel enrichment is no longer necessary. When running at part loads, the engine operates at high compression ratios (up to 15:1) to minimize BSFC and maximize the sweet spot area on the map. Next generation MCE-5 VCRi engines will combine VCR and stoichiometric charges, highly diluted with external cooled EGR, in order to improve part loads efficiency by means of both the reduction in heat and pumping losses, and the optimization of compression-expansion ratio. This strategy, added to downsizing-donwspeeding, requires high-energy ignition systems to promote repeatable, stable, rapid and complete combustion.
Video

Modernizing the Opposed-Piston Engine for Efficient, Clean Transportation

2012-05-10
Historically, the opposed-piston, two-stroke (OP2S) diesel engine set combined records for fuel efficiency and power density that have yet to be met by any other engine type. However, with modern emissions standards, wide-spread development of this engine for on-highway use stopped. At Achates Power, state-of-the-art analytical tools and engineering methods have produced an OP2S engine that, when compared to a leading medium-duty engine, has demonstrated a 21% fuel efficiency gain and engine-out emissions levels meeting U.S. EPA10 with conventional after-treatment. Among the presentation topics covered are thermodynamic efficiency, demonstrated engine results, cost and weight advantages, and overcoming two-stroke engine challenges. Presenter David Johnson, Achates Power Inc.
Video

Future Development of EcoBoost Technology

2012-05-10
Combustion engines are typically only 20-30% efficient at part-load operating conditions, resulting in poor fuel economy on average. To address this, LiquidPiston has developed an improved thermodynamics cycle, called the High-Efficiency Hybrid Cycle (HEHC), which optimizes each process (stroke) of the engine operation, with the aim of maximizing fuel efficiency. The cycle consists of: 1) a high compression ratio; 2) constant-volume combustion, and 3) over-expansion. At a modest compression ratio of 18:1, this cycle offers an ideal thermodynamic efficiency of 74%. To embody the HEHC cycle, LiquidPiston has developed two very different rotary engine architectures ? called the ?M? and ?X? engines. These rotary engine architectures offer flexibility in executing the thermodynamics cycle, and also result in a very compact package. In this talk, I will present recent results in the development of the LiquidPiston engines. The company is currently testing 20 and 40 HP versions of the ?M?
Video

Development of High-Efficiency Rotary Engines

2012-05-10
In this presentation, we will explain how the traditional Miller Cycle - which has its limitations in the traditional four-stroke, Otto Cycle engine provides new opportunities for greater fuel efficiency gains and engine downsizing when incorporated in a split-cycle combustion process. Results will also be shared from studies showing how these implementations can provide both significant drops in fuel consumption and increases in power when incorporated into some of today's most economic vehicles. Presenter Stephen Scuderi, Scuderi Group LLC
Video

Brief Investigation of SCR High Temperature N2O Production

2012-06-18
Nitrous Oxide (N2O) is a greenhouse gas with a Global Warming Potential (GWP) of 298-310 [1,2] (298-310 times more potent than carbon dioxide (CO2)). As a result, any aftertreatment system that generates N2O must be well understood to be used effectively. Under low temperature conditions, N2O can be produced by Selective Catalytic Reduction (SCR) catalysts. The chemistry is reasonably well understood with N2O formed by the thermal decomposition of ammonium nitrate [3]. Ammonium nitrate and N2O form in oxides of nitrogen (NOx) gas mixtures that are high in nitrogen dioxide (NO2)[4]. This mechanism occurs at a relatively low temperature of about 200°C, and can be controlled by maintaining the nitric oxide (NO)/NO2 ratio above 1. However, N2O has also been observed at relatively high temperatures, in the region of 500°C.
SAE MOBILUS Subscription

Aircraft Interiors

2011-06-27
The Aircraft Interiors subscription addresses the specialized needs and mechanical requirements for aircraft cabin interior design. The application of these standards will aid in the efficient and cost-effective manufacture of quality aircraft components. The standards in this resource include: Glossary of Technical and Physiological Terms Related to Aerospace Oxygen Systems Flight Deck Layout and Facilities Numeral, Letter and Symbol Dimensions for Aircraft Instrument Displays Oxygen Equipment for Aircraft Human Interface Design Methodology for Integrated Display Symbology
Collection

Climate Control, 2010

2010-08-02
Climate control is a defining vehicle attribute that has strong interaction with other vehicle systems. Also, performance and quality of the climate control system are critical to customer satisfaction. The 10 papers in this technical paper collection cover alternative A/C systems, multi-zone climate control, cabin air filtration, automatic controls, and optimized energy consumption.
X