Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Corrosion Engineering and Prevention

The transportation industry, including motor vehicles, aircraft, rail, marine, commercial, off-road and defense vehicles, as well as infrastructures, energy sectors, raw materials, manufacturing, health and food industries all experience significant issues with corrosion which results in billions of dollars of loss each year. Corrosion education and prevention is essential to improve and increase the service life of parts and components which may have a significant impact on the economy of various industries and nations.
Training / Education

Materials Degradation in Mechanical Design Wear, Corrosion, Fatigue and their Interactions

2019-04-09
Materials degradation from environmental conditions is a common factor that will often occur in mechanical equipment used in every type of environment. These processes can frequently materialize in unpredicted and harmful ways, especially when they interact and lead to early component damage or failure. This five-session course will summarize the mechanisms that cause materials and mechanical components to degrade in service through exposure to deleterious mechanical and environmental conditions.
Training / Education

Fuel Systems Material Selection and Compatibility with Alternative Fuels

2019-04-02
This course will introduce the participants to the factors governing fuel-material compatibility and methods to predict and empirically determine compatibility for new alternative fuel chemistries.  By understanding the mechanisms and factors associated with chemically-induced degradation, participants will be able to assess the impact of fuel chemistry to infrastructure components, including those associated with vehicle fuel systems.  This course is unique in that it looks at compatibility from a fuel chemistry perspective, especially new fuel types such as alcohols and other biofuels. 
Standard

ELECTROMAGNETIC TESTING BY EDDY CURRENT METHODS

1991-03-01
HISTORICAL
J425_199103
The purpose of this SAE Information Report is to provide general information relative to the nature and use of eddy current techniques for nondestructive testing. The document is not intended to provide detailed technical information but to serve as an introduction to the principles and capabilities of eddy current testing, and as a guide to more extensive references listed in Section 2.
Standard

Spark Arrester Test Carbon

2013-03-26
CURRENT
J997_201303
This SAE Standard establishes physical properties required of SAE Coarse Test Carbon and SAE Fine Test Carbon and establishes test methods to ensure that these requirements are met.
Standard

Socket Wrenches, Hand (Metric)

2013-02-10
CURRENT
MA4534A
This SAE Aerospace Standard covers high strength commercial sockets and universal sockets which possess the strength, clearances, and internal wrenching design so configured that, when mated with hexagon (6 point) fasteners, they shall transmit torque to the fastener without bearing on the outer 5% of the fastener’s wrenching points. This document provides additional requirements beyond ANSI B107.5 appropriate for aerospace use. Inclusion of dimensional data in this document is not intended to imply all of the products described therein are stock production sizes. Consumers are requested to consult with manufacturers concerning lists of stock production sizes.
Standard

SINTERED CARBIDE TOOLS

1977-02-01
HISTORICAL
J439_197702
This recommended practice covers methods for measuring or evaluating five properties or characteristics of sintered carbide which contribute significantly to the performance of sintered carbide tools. These properties are: hardness, specific gravity, apparent porosity, structure, and grain size. They are covered under separate headings below.
Standard

Sintered Carbide Tools

2018-01-09
CURRENT
J439_201801
This recommended practice covers methods for measuring or evaluating five properties or characteristics of sintered carbide which contribute significantly to the performance of sintered carbide tools. These properties are: hardness, specific gravity, apparent porosity, structure, and grain size. They are covered under separate headings below.
Standard

Ball Joints

2012-10-15
CURRENT
J490_201210
This SAE Standard covers the general and dimensional data for various types of ball joints with inch threads commonly used on control linkages in automotive, marine, and construction and industrial equipment applications. Inasmuch as the load carrying and wear capabilities of ball joints vary considerably with their design and fabrication, it is suggested that the manufacturers be consulted in regard to these features and for recommendations relating to application of the different types and styles available. The inclusion of dimensional data in this standard is not intended to imply that all the products described are stock production sizes. Consumers are requested to consult with manufacturers concerning availability of stock production parts.
Standard

ELECTROPLATING AND RELATED FINISHES

1985-02-01
CURRENT
J474_198502
Electroplating is a process whereby an object is coated with one or more relatively thin, tightly adherent layers of one or more metals. It is accomplished by placing the object to be coated on a plating rack or a fixture, or in a basket or in a rotating container in such a manner that a suitable current may flow through it, and then immersing it in a series of solutions and rinses in planned sequence. The advantage to be gained by electroplating may be considerable; broadly speaking, the process is used when it is desired to endow the basis material (selected for cost, material conservation, and physical property reasons) with surface properties it does not possess. It should be noted that although electroplating is the most widely used process for applying metals to a substrate, they may also be applied by spraying, vacuum deposition, cladding, hot dipping, chemical reduction, mechanical plating, etc.
Standard

Definition for Particle Size

1981-07-01
HISTORICAL
J391_198107
'Effective particle or domain size' is a phrase used in X-ray diffraction literature to describe the size of the coherent regions within a material which are diffracting. Coherency in this sense means diffracting as a unit. Small particle size causes X-ray line broadening and as such can be measured. It has been shown related to substructure as observed in transmission electron microscopy. Particle size is affected by hardening, cold working, and fatigue; conversely, there is increasing evidence that particle size, per se, affects both static and dynamic strength.
X