Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Catalytic NOx Control Technologies for Diesel and GDI Engines

2019-04-01
Lean burn engines (diesel and GDI) boast higher fuel economy and cleaner emissions than conventionally tuned engines while producing equivalent power. They employ higher combustion chamber compression ratios, significant air intake swirl and precise lean-metered direct fuel injection. The downfall of lean-burn technology, however, is increased exhaust NOx emissions (due to higher heat and cylinder pressure) and a somewhat narrower RPM power-band (due to slower burn rates of lean mixtures). Removal of NOx from exhausts is a critical need for emission standards and ambient ozone requirements.
Video

Monitoring NO2 Production of a Diesel Oxidation Catalyst

2012-01-24
A combination of laboratory reactor measurements and vehicle FTP testing has been combined to demonstrate a method for diagnosing the formation of NO2 from a diesel oxidation catalyst (DOC). Using small cores from a production DOC and simulated diesel exhaust, the laboratory reactor experiments are used to support a model for DOC chemical reaction kinetics. The model we propose shows that the ability to produce NO2 is chemically linked to the ability of the catalyst to oxidize hydrocarbon (HC). For thermally damaged DOCs, loss of the HC oxidation function is simultaneous with loss of the NO2 production function. Since HC oxidation is the source of heat generated in the DOC under regeneration conditions, we conclude that a diagnostic of the DOC exotherm is able to detect the failure of the DOC to produce NO2. Vehicle emissions data from a 6.6 L Duramax HD pick-up with DOC of various levels of thermal degradation is provided to support the diagnostic concept.
Video

New Particulate Matter Sensor for On Board Diagnosis

2012-02-16
The presentation describes technology developments and the integration of these technologies into new emission control systems. As in other years, the reader will find a wide range of topics from various parts of the world. This is reflective of the worldwide scope and effort to reduce diesel exhaust emissions. Topics include the integration of various diesel particulate matter (PM) and Nitrogen Oxide (NOx) technologies as well as sensors and other emissions related developments. Presenter Atsuo Kondo, NGK Insulators, Ltd.
Video

SCR Deactivation Study for OBD Applications

2012-06-18
Selective catalytic reduction (SCR) catalysts will be used to reduce oxides of nitrogen (NOx) emissions from internal combustion engines in a number of applications [1,2,3,4]. Southwest Research Institute® (SwRI)® performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO2 formulation, a Cu-zeolite formulation and an Fe-zeolite formulation. This work describes NOx timed response to ammonia (NH3) transients as a function of thermal aging time and temperature. It has been proposed that the response time of NOx emissions to NH3 transients, effected by changes in diesel emissions fluid (DEF) injection rate, could be used as an on-board diagnostic (OBD) metric. The objective of this study was to evaluate the feasibility and practicality of this OBD approach.
Video

Brief Investigation of SCR High Temperature N2O Production

2012-06-18
Nitrous Oxide (N2O) is a greenhouse gas with a Global Warming Potential (GWP) of 298-310 [1,2] (298-310 times more potent than carbon dioxide (CO2)). As a result, any aftertreatment system that generates N2O must be well understood to be used effectively. Under low temperature conditions, N2O can be produced by Selective Catalytic Reduction (SCR) catalysts. The chemistry is reasonably well understood with N2O formed by the thermal decomposition of ammonium nitrate [3]. Ammonium nitrate and N2O form in oxides of nitrogen (NOx) gas mixtures that are high in nitrogen dioxide (NO2)[4]. This mechanism occurs at a relatively low temperature of about 200°C, and can be controlled by maintaining the nitric oxide (NO)/NO2 ratio above 1. However, N2O has also been observed at relatively high temperatures, in the region of 500°C.
Video

Development of a 3rd Generation SCR NH3-Direct Dosing System for Highly Efficient DeNOx

2012-06-18
In this project funded by the Bayerische Forschungsstiftung two fundamental investigations had been carried out: first a new N-rich liquid ammonia precursor solution based on guanidine salts had been completely characterized and secondly a new type of side-flow reactor for the controlled catalytic decomposition of aqueous NH3 precursor to ammonia gas has been designed, applied and tested in a 3 liter passenger car diesel engine. Guanidine salts came into the focus due to the fact of a high nitrogen-content derivate of urea (figure 1). Specially guanidinium formate has shown extraordinary solubility in water (more than 6 kg per 1 liter water at room temperature) and therefore a possible high ammonia potential per liter solution compared to the classical 32.5% aqueous urea solution (AUS32) standardized in ISO 22241 and known as DEF (diesel emission fluid), ARLA32 or AdBlue®. Additionally a guanidine based formulation could be realized with high freezing stability down to almost ?30 °C (?
Video

Development of DPF/SCR System for Heavy Duty Diesel Engine

2012-06-15
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
Video

Characterization of a New Advanced Diesel Oxidation Catalyst with Low Temperature NOx Storage Capability for LD Diesel

2012-06-18
Currently, two consolidated aftertreatment technologies are available for the reduction of NOx emissions from diesel engines: Urea SCR (Selective Catalytic Reduction) systems and LNT (Lean NOx Trap) systems. Urea SCR technology, which has been widely used for many years at stationary sources, is becoming nowadays an attractive alternative also for light-duty diesel applications. However, SCR systems are much more effective in NOx reduction efficiency at high load operating conditions than light load condition, characterized by lower exhaust gas temperatures.
Video

On-Road Evaluation of an Integrated SCR and Continuously Regenerating Trap Exhaust System

2012-06-18
Four-way, integrated, diesel emission control systems that combine selective catalytic reduction for NOx control with a continuously regenerating trap to remove diesel particulate matter were evaluated under real-world, on-road conditions. Tests were conducted using a semi-tractor with an emissions year 2000, 6-cylinder, 12 L, Volvo engine rated at 287 kW at 1800 rpm and 1964 N-m. The emission control system was certified for retrofit application on-highway trucks, model years 1994 through 2002, with 4-stroke, 186-373 kW (250-500 hp) heavy-duty diesel engines without exhaust gas recirculation. The evaluations were unique because the mobile laboratory platform enabled evaluation under real-world exhaust plume dilution conditions as opposed to laboratory dilution conditions. Real-time plume measurements for NOx, particle number concentration and size distribution were made and emission control performance was evaluated on-road.
Video

An Experimental Analysis on Diesel/n-Butanol Blends Operating in Partial Premixed Combustion in a Light Duty Diesel Engine

2012-06-18
This paper reports results of an experimental investigation performed on a commercial diesel engine supplied with fuel blends having low cetane number to attain a simultaneous reduction in NOx and smoke emissions. Blends of 20% and 40% of n-butanol in conventional diesel fuel have been tested, comparing engine performance and emissions to diesel ones. Taking advantage of the fuel blend higher resistance to auto ignition, it was possible to extend the range in which a premixed combustion is achieved. This allowed to match the goal of a significant reduction in emissions without important penalties in fuel consumption. The experimental activity was carried on a turbocharged, water cooled, 4 cylinder common rail DI diesel engine. The engine equipment included an exhaust gas recirculation system controlled by an external driver, a piezo-quartz pressure transducer to detect the in-cylinder pressure signal and a current probe to acquire the energizing current to the injector.
Video

Evaluation of a NOx Transient Response Method for OBD of SCR Catalysts

2012-01-30
OBD requirements for aftertreatment system components require monitoring of the individual system components. One such component can be an NH3-SCR catalyst for NOx reduction. An OBD method that has been suggested is to generate positive or negative spikes in the inlet NH3 concentration, and monitor the outlet NOx transient response. A slow response indicates that the catalyst is maintaining its NH3 storage capacity, and therefore it is probably not degraded. A fast response indicates the catalyst has lost NH3 storage capacity, and may be degraded. The purpose of the work performed at Southwest Research Institute was to assess this approach for feasibility, effectiveness and practicality. The presentation will describe the work performed, results obtained, and implications for applying this method in test laboratory and real-world situations. Presenter Gordon J. Bartley, Southwest Research Institute
Video

SAE Eye on Engineering: Bosch's New Diesel Tech

2018-05-17
Diesel engines got an undeserved bad rap when Volkswagen was caught cheating on its emissions certification. In this episode of SAE Eye on Engineering, Editor-in-Chief Lindsay Brooke looks at Bosch's technology solution to reduce NOx emissions. SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show.
Video

Impact of Supervisory Control on Criteria Tailpipe Emissions for an Extended-Range Electric Vehicle

2012-06-05
The Hybrid Electric Vehicle Team of Virginia Tech participated in the three-year EcoCAR Advanced Vehicle Technology Competition organized by Argonne National Laboratory, and sponsored by General Motors and the U.S. Department of Energy. The team established goals for the design of a plug-in, range-extended hybrid electric vehicle that meets or exceeds the competition requirements for EcoCAR. The challenge involved designing a crossover SUV powertrain to reduce fuel consumption, petroleum energy use, regulated tailpipe emissions, and well-to-wheel greenhouse gas emissions. To interface with and control the hybrid powertrain, the team added a Hybrid Vehicle Supervisory Controller, which enacts a torque split control strategy. This paper builds on an earlier paper [1] that evaluated the petroleum energy use, criteria tailpipe emissions, and greenhouse gas emissions of the Virginia Tech EcoCAR vehicle and control strategy from the 2nd year of the competition.
Technical Paper

Effects of Diluting the Intake Air of SI Engine with Argon Inert Gas on the NOx Emissions and Performance

2009-04-20
2009-01-1186
The Argon inert gas is used to dilute the intake air of a spark ignition engine to decrease nitrogen oxides. A Ricardo E6 research engine was used. A test rig has been designed to admit the gas to the intake air of the engine for up to 15% of the intake air. The system could admit the inert gas and oxygen at preset amounts. The variables studied included the engine speed, Argon to inlet air ratio, and the results presented here included the combustion pressure, temperature, burned mass fraction, heat release rate, brake power, thermal efficiency, exhaust temperature, brake specific fuel consumption and emissions of CO, CO2, NO and O2. It was found that the addition of Argon gas to the intake air of the gasoline engine causes the nitrogen oxide to reduce effectively.
Technical Paper

Development of Fuel Cell Hybrid Vehicle by Toyota -Durability-

2009-04-20
2009-01-1002
Various issues must be resolved before sustainable mobility can be achieved, the most important of which are reacting to energy supply and demand, and lowering CO2 emissions. At present, the fact that the vast majority of vehicles run on conventional oil is regarded as a problem for which Toyota Motor Corporation (TMC) is developing various technological solutions. Fuel cell (FC) technology is one of the most promising of these solutions. A fuel cell is an extremely clean device that uses hydrogen and oxygen to generate power without emitting substances like CO2, NOx, or PM during operation. Its energy efficiency is high and it is widely expected to form the basis of the next generation of powertrains. Since 1992, TMC has been working to develop the main components of fuel cell vehicles, including the fuel cell itself, and the high pressure hydrogen tank and hybrid systems.
Technical Paper

Regulated and NO2 Emissions from a Euro 4 Passenger Car with Catalysed DPFs

2009-04-20
2009-01-1083
Nitrogen dioxide (NO2) concentrations in European city street air have not decreased after year 2000 in spite of stringent Euro 3 and Euro 4 NOx limits for diesel passenger cars. NO2 emissions from modern diesel vehicles are caused by platinum catalysed Diesel Oxidation Catalysts (DOC) and platinum catalysed Diesel Particulate Filters (cDPF). The NO2 formed on DOC and cDPFs are used for passive soot regeneration but the excess of NO2 out of the filter is not controlled. A Euro 4 diesel passenger car equipped with a DOC and a palladium base metal cDPF was compared with DOC plus a platinum based cDPF using NEDC test cycle with both cold and hot start, FTP-75, and Artemis test cycles. Emissions of NO2 and NOx were measured online in the raw exhaust, and with standard bag sampling method. Relative to cold NEDC the NOx and NO2 levels increased with a warm engine.
Journal Article

Properties of Partial-Flow and Coarse Pore Deep Bed Filters Proposed to Reduce Particle Emission of Vehicle Engines

2009-04-20
2009-01-1087
Four of these Particulate Reduction Systems (PMS) were tested on a passenger car and one of them on a HDV. Expectation of the research team was that they would reach at least a PM-reduction of 30% under all realistic operating conditions. The standard German filter test procedure for PMS was performed but moreover, the response to various operating conditions was tested including worst case situations. Besides the legislated CO, NOx and PM exhaust-gas emissions, also the particle count and NO2 were measured. The best filtration efficiency with one PMS was indeed 63%. However, under critical but realistic conditions filtration of 3 of 4 PMS was measured substantially lower than the expected 30 %, depending on operating conditions and prior history, and could even completely fail. Scatter between repeated cycles was very large and results were not reproducible. Even worse, with all 4 PMS deposited soot, stored in these systems during light load operation was intermittently blown-off.
Journal Article

Laboratory Study of Soot, Propylene, and Diesel Fuel Impact on Zeolite-Based SCR Filter Catalysts

2009-04-20
2009-01-0903
Selective Catalytic Reduction (SCR) catalysts have been designed to reduce NOx with the assistance of an ammonia-based reductant. Diesel Particulate Filters (DPF) have been designed to trap and eventually oxidize particulate matter (PM). Combining the SCR function within the wall of a high porosity particulate filter substrate has the potential to reduce the overall complexity of the aftertreatment system while maintaining the required NOx and PM performance. The concept, termed Selective Catalytic Reduction Filter (SCRF) was studied using a synthetic gas bench to determine the NOx conversion robustness from soot, coke, and hydrocarbon deposition. Soot deposition, coke derived from propylene exposure, and coke derived from diesel fuel exposure negatively affected the NOx conversion. The type of soot and/or coke responsible for the inhibited NOx conversion did not contribute to the SCRF backpressure.
Journal Article

Evaluation of SCR Catalyst Technology on Diesel Particulate Filters

2009-04-20
2009-01-0910
Selective Catalytic Reduction (SCR) catalysts have been demonstrated as effective for controlling NOx emissions from diesel engines, maintaining high NOx conversion even after the extended high temperature exposure encountered in systems with active filter regenerations. As future diesel emission regulations are expected to be further reduced, packaging a large volume of SCR catalysts in diesel exhaust systems, along with DOC and particulate filter catalysts, will be challenging. One method to reduce the total volume of catalysts in diesel exhaust systems is to combine the SCR and DPF catalysts by coating SCR catalyst technology on particulate filters. In this work, engine evaluation of SCR coated filters has been conducted to determine the viability of the technology. Steady-state engine evaluations demonstrated that high NOx conversions can be achieved for SCR coated filters after high temperature oven aging.
X