Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Automotive Heat Transfer

Heat transfer affects the performance, emissions and durability of the engine as well as the design, packaging, material choice and fatigue life of vehicle components. This course covers the broad range of heat transfer considerations that arise during the design and development of the engine and the vehicle with a primary focus on computational models and experimental validation covering the flow of heat from its origin in the engine cylinders and its transfer via multiple paths through engine components.
Collection

Thermal Systems Modeling and Simulation, 2012

2012-04-13
The 14 papers in this technical paper collection discuss thermal systems modeling and simulation. Topics covered include fuel efficiency and thermal performance, exhaust system manifold development, engine cooling systems with a double circuit, CFD analysis, and more. The 14 papers in this technical paper collection discuss thermal systems modeling and simulation. Topics covered include fuel efficiency and thermal performance, exhaust system manifold development, engine cooling systems with a double circuit, CFD analysis, and more.
Collection

Advances in Oxidation and Particulate Filter Systems, 2014

2014-04-01
This technical paper collection covers the complete particulate filter system. There are papers covering the DOC aging as well as the effect of high sulfur fuel on the DOC. A couple of papers study the effect of ash accumulation and two papers cover a novel new asymmetric cell design and modeling of this new design. Finally we have a paper on gasoline particulate filters.
Collection

Energy Efficiency of Thermal Systems, 2018

2018-04-03
Proper thermal management can significantly contribute to overall system energy efficiency. The papers in this collection highlight the latest developments in thermal management energy efficiency.
Collection

Energy Efficiency of Thermal Systems, 2017

2017-03-28
Proper thermal management can significantly contribute to overall system energy efficiency. The papers in this collection highlight the latest developments in thermal management energy efficiency.
Collection

Advances in Catalyst Substrates, 2017

2017-03-28
Papers included in this collection cover the systems engineering experience required to achieve ultra-low emission levels on gasoline light-duty vehicles. Emission system component topics include the development of advanced three-way catalysts, the development of NOX control strategies for gasoline lean burn engines, the application of high cell density substrates to advanced emission systems, and the integration of these components into full vehicle emission systems.
Collection

Climate Control, 2018

2018-04-03
Climate control is a defining vehicle attribute and is associated with brand image. Thermal performance is critical to customer satisfaction. The primary objective is to deliver occupant safety and thermal comfort at minimum energy consumption, yet the system has strong design interaction with other vehicle systems. Noise, Air Quality, and Energy ace are just a few of the recent advances.
Collection

Thermal Systems Modeling and Simulation, 2018

2018-04-03
The papers in this collleciton focus on state of the art simulation technologies for modeling thermal systems and their application in the development and optimization of vehicle thermal management and fuel economy. The papers range from empirical, 1D modeling methods to three dimensional CFD models as well as coupled methods.
Collection

Climate Control, 2017

2017-03-28
Climate control is a defining vehicle attribute and is associated with brand image. Thermal performance is critical to customer satisfaction. The primary objective is to deliver occupant safety and thermal comfort at minimum energy consumption, yet the system has strong design interaction with other vehicle systems. Noise, Air Quality, and Energy ace are just a few of the recent advances.
Collection

Thermal Systems Modeling and Simulation, 2017

2017-03-28
The papers in this collleciton focus on state of the art simulation technologies for modeling thermal systems and their application in the development and optimization of vehicle thermal management and fuel economy. The papers range from empirical, 1D modeling methods to three dimensional CFD models as well as coupled methods
Collection

Powertrain Thermal Management: Combustion Chamber, Battery Cooling, and Engine Cooling, 2017

2017-03-28
The papers included in this collection cover modeling (zero-D, 1D, 2D, 3D CFD) and experimental papers on: combustion chamber, systems (lubrication, cooling, fuel, EGR); components (oil pumps, coolant pump, fuel injectors, compressors, turbines, turbochargers, torque converters, gear box, fans, bearings, valves, ports, manifolds, turbine housing); heat exchangers (radiators, oil coolers); aftertreatment (SCR, DOC, DOF, exhaust gas cooling); battery cooling (HEV, EV, motor/generator) and controls (passive and active).
Video

Neural Network-based Optimal Control for Advanced Vehicular Thermal Management Systems

2011-12-05
Advanced vehicular thermal management system can improve engine performance, minimize fuel consumption, and reduce emissions by harmoniously operating computer-controlled servomotor components. In this paper, a neural network-based optimal control strategy is proposed to regulate the engine temperature through the advanced cooling system. Presenter Asma Al Tamimi, Hashemite University
Video

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-11-29
Today CFD is an important tool for engineers in the automotive industry who model and simulate fluid flow. For the complex field of Underhood Thermal Management, CFD has become a very important tool to engineer the cooling airflow process in the engine bay of vehicles. Presenter Peter Gullberg, Chalmers University of Technology
Video

Transesterification of Waste Cooking Oil in Presence of Crushed Seashell as a Support for Solid Heterogeneous Catalyst

2011-12-05
Developing relatively cheap and widely available resources for heterogeneous solid catalyst synthesis is a promising approach for biodiesel fuel industry. Seashell which is essentially calcium carbonate can be used as a basic support for transesterification heterogeneous catalysts. In the present investigation, the alcoholysis of waste frying oil has been carried out using seashell-supported K3 PO4 as solid catalyst. Presenter Essam Oun Al-Zaini, PhD student, UNSW
Video

Monitoring NO2 Production of a Diesel Oxidation Catalyst

2012-01-24
A combination of laboratory reactor measurements and vehicle FTP testing has been combined to demonstrate a method for diagnosing the formation of NO2 from a diesel oxidation catalyst (DOC). Using small cores from a production DOC and simulated diesel exhaust, the laboratory reactor experiments are used to support a model for DOC chemical reaction kinetics. The model we propose shows that the ability to produce NO2 is chemically linked to the ability of the catalyst to oxidize hydrocarbon (HC). For thermally damaged DOCs, loss of the HC oxidation function is simultaneous with loss of the NO2 production function. Since HC oxidation is the source of heat generated in the DOC under regeneration conditions, we conclude that a diagnostic of the DOC exotherm is able to detect the failure of the DOC to produce NO2. Vehicle emissions data from a 6.6 L Duramax HD pick-up with DOC of various levels of thermal degradation is provided to support the diagnostic concept.
Video

1D Simulation and Experimental Analysis of a Turbocharger Compressor for Automotive Engines under Unsteady Flow Conditions

2012-02-15
Zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine breathing and boosting; SI combustion and emissions; CI combustion and emissions; fundamentals of engine thermodynamics; thermal management; mechanical and lubrication systems; system level models for controls; system level models for vehicle fuel economy and emissions predictions. Presenter Fabio Bozza, Universita di Napoli
Video

SCR Deactivation Kinetics for Model-Based Control and Accelerated Aging Applications

2012-06-18
Selective Catalytic Reduction (SCR) catalysts are used to reduce NOx emissions from internal combustion engines in a variety of applications [1,2,3,4]. Southwest Research Institute (SwRI) performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO2 formulation, a Cu-zeolite formulation and a Fe-zeolite formulation. This work describes NH3 storage capacity measurement data as a function of aging time and temperature. Addressing one objective of the work, these data can be used in model-based control algorithms to calculate the current NH3 storage capacity of an SCR catalyst operating in the field, based on time and temperature history. The model-based control then uses the calculated value for effective DEF control and prevention of excessive NH3 slip. Addressing a second objective of the work, accelerated thermal aging of SCR catalysts may be achieved by elevating temperatures above normal operating temperatures.
Video

SCR Deactivation Study for OBD Applications

2012-06-18
Selective catalytic reduction (SCR) catalysts will be used to reduce oxides of nitrogen (NOx) emissions from internal combustion engines in a number of applications [1,2,3,4]. Southwest Research Institute® (SwRI)® performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO2 formulation, a Cu-zeolite formulation and an Fe-zeolite formulation. This work describes NOx timed response to ammonia (NH3) transients as a function of thermal aging time and temperature. It has been proposed that the response time of NOx emissions to NH3 transients, effected by changes in diesel emissions fluid (DEF) injection rate, could be used as an on-board diagnostic (OBD) metric. The objective of this study was to evaluate the feasibility and practicality of this OBD approach.
Video

Development of a 3rd Generation SCR NH3-Direct Dosing System for Highly Efficient DeNOx

2012-06-18
In this project funded by the Bayerische Forschungsstiftung two fundamental investigations had been carried out: first a new N-rich liquid ammonia precursor solution based on guanidine salts had been completely characterized and secondly a new type of side-flow reactor for the controlled catalytic decomposition of aqueous NH3 precursor to ammonia gas has been designed, applied and tested in a 3 liter passenger car diesel engine. Guanidine salts came into the focus due to the fact of a high nitrogen-content derivate of urea (figure 1). Specially guanidinium formate has shown extraordinary solubility in water (more than 6 kg per 1 liter water at room temperature) and therefore a possible high ammonia potential per liter solution compared to the classical 32.5% aqueous urea solution (AUS32) standardized in ISO 22241 and known as DEF (diesel emission fluid), ARLA32 or AdBlue®. Additionally a guanidine based formulation could be realized with high freezing stability down to almost ?30 °C (?
X