Refine Your Search

Search Results

Viewing 1 to 10 of 10
Standard

Energy Transfer System for Electric Vehicles - Part 1: Functional Requirements and System Architectures

2014-02-26
CURRENT
J2293/1_201402
SAE J2293 establishes requirements for Electric Vehicles (EV) and the off-board Electric Vehicle Supply Equipment (EVSE) used to transfer electrical energy to an EV from an Electric Utility Power System (Utility) in North America. This document defines, either directly or by reference, all characteristics of the total EV Energy Transfer System (EV-ETS) necessary to insure the functional interoperability of an EV and EVSE of the same physical system architecture. The ETS, regardless of architecture, is responsible for the conversion of AC electrical energy into DC electrical energy that can be used to charge the Storage Battery of an EV, as shown in Figure 1. The different physical ETS system architectures are identified by the form of the energy that is transferred between the EV and the EVSE, as shown in Figure 2. It is possible for an EV and EVSE to support more than one architecture.
Standard

Energy Transfer System for Electric Vehicles - Part 2: Communication Requirements and Network Architecture

2014-02-26
CURRENT
J2293/2_201402
SAE J2293 establishes requirements for Electric Vehicles (EV) and the off-board Electric Vehicle Supply Equipment (EVSE) used to transfer electrical energy to an EV from an Electric Utility Power System (Utility) in North America. This document defines, either directly or by reference, all characteristics of the total EV Energy Transfer System (EV-ETS) necessary to insure the functional interoperability of an EV and EVSE of the same physical system architecture. The ETS, regardless of architecture, is responsible for the conversion of AC electrical energy into DC electrical energy that can be used to charge the Storage Battery of an EV, as shown in Figure 1. The different physical ETS system architectures are identified by the form of the energy that is transferred between the EV and the EVSE, as shown in Figure 2. It is possible for an EV and EVSE to support more than one architecture.
Standard

Communication for Smart Charging of Plug-in Electric Vehicles Using Smart Energy Profile 2.0

2019-08-20
CURRENT
J2847/1_201908
This document describes the details of the Smart Energy Profile 2.0 (SEP2.0) communication used to implement the functionality described in the SAE J2836-1 use cases. Each use case subsection includes a description of the function provided, client device requirements, and sequence diagrams with description of the steps. Implementers are encouraged to consult the SEP2.0 schema and application specification for further details. Where relevant, this document notes, but does formally specify, interactions between the vehicle and vehicle operator.
Standard

Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using Travel Survey Data

2019-06-25
WIP
J2841
The total fuel and energy consumption rates of a Plug-In Hybrid Electric Vehicle (PHEV) vary depending upon the distance driven. For PHEVs, the assumption is that operation starts in battery charge-depleting mode and eventually changes to battery charge-sustaining mode. Total distance between charge events determines how much of the driving is performed in each of the two fundamental modes. An equation describing the portion of driving in each mode is defined. Driving statistics from the National Highway Transportation Survey are used as inputs to the equation to provide an aggregate "Utility Factor" (UF) applied to the charge-depleting mode results.
Standard

Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using Travel Survey Data

2010-09-21
CURRENT
J2841_201009
This SAE Information Report establishes a set of “Utility Factor” (UF) curves and the method for generating these curves. The UF is used when combining test results from battery charge-depleting and charge-sustaining modes of a Plug-in Hybrid Electric Vehicle (PHEV). Although any transportation survey data set can be used, this document will define the included UF curves by using the 2001 United States Department of Transportation (DOT) “National Household Travel Survey” and a supplementary dataset.
Standard

Use Cases for Plug-in Vehicle Communication as a Distributed Energy Resource

2013-01-03
HISTORICAL
J2836/3_201301
This SAE Information Report establishes use cases for a Plug-in Electric Vehicle (PEV) communicating with an Energy Management System (EMS) as a Distributed Energy Resource (DER). The primary purpose of SAE J2836/3™ is to define use cases which must be supported by SAE J2847/3. This document also provides guidance for updates to SAE J2847/2 to allow an inverter in an EVSE to use the PEV battery when operating together as a distributed energy resource (DER).
Standard

Power Quality Requirements for Plug-In Electric Vehicle Chargers

2011-12-08
HISTORICAL
J2894/1_201112
The intent of this document is to develop a recommended practice for PEV chargers, whether on-board or off-board the vehicle, that will enable equipment manufacturers, vehicle manufacturers, electric utilities and others to make reasonable design decisions regarding power quality. The three main purposes are as follows: 1 To identify those parameters of PEV battery charger that must be controlled in order to preserve the quality of the AC service. 2 To identify those characteristics of the AC service that may significantly impact the performance of the charger. 3 To identify values for power quality, susceptibility and power control parameters which are based on current U.S. and international standards. These values should be technically feasible and cost effective to implement into PEV battery chargers. SAE J2894/2 Power Quality Requirements for Plug-In Electric Vehicle Chargers – Test Methods will describe the test methods for the parameters / requirements in this document.
Standard

Interconnection Requirements for Onboard, Utility-Interactive Inverter Systems

2015-05-19
HISTORICAL
J3072_201505
This SAE Standard J3072 establishes interconnection requirements for a utility-interactive inverter system which is integrated into a plug-in electric vehicle (PEV) and connects in parallel with an electric power system (EPS) by way of conductively-coupled, electric vehicle supply equipment (EVSE). This standard also defines the communication between the PEV and the EVSE required for the PEV onboard inverter to be configured and authorized by the EVSE for discharging at a site. The requirements herein are intended to be used in conjunction with IEEE 1547 Standard for Interconnecting Distributed Resources with Electric Power Systems and IEEE 1547.1 Standard for Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems.
Standard

Interconnection Requirements for Onboard, Grid Support Inverter Systems

2021-03-10
CURRENT
J3072_202103
This SAE J3072 Standard establishes requirements for a grid support inverter system function which is integrated into a plug-in electric vehicle (PEV) which connects in parallel with an electric power system (EPS) by way of conductively coupled, electric vehicle supply equipment (EVSE). This standard also defines the communication between the PEV and the EVSE required for the PEV onboard inverter function to be configured and authorized by the EVSE for discharging at a site. The requirements herein are intended to be used in conjunction with IEEE 1547 and IEEE 1547.1. This standard shall also support interactive inverters which conform to the requirements of IEEE 1547-2003 and IEEE 1547.1-2005, recognizing that many utility jurisdictions may not authorize interconnection.
Standard

Vehicle Power Test for Electrified Powertrains

2017-09-19
HISTORICAL
J2908_201709
This document provides test methods for evaluating the maximum power of electrified vehicle powertrain systems by direct measurement at the drive wheel hubs or axles. Additional tests are included specifically for PHEVs to measure electric-only propulsion power and for HEVs to measure electric power assist and regenerative braking. The testing requires either a chassis or hub dynamometer for all driven wheels. Results are processed to provide fair and consistent comparisons of power capabilities among different designs of electrified powertrains. Tests can also be performed on conventional vehicles if precise comparisons to electrified vehicles are desired.
X