Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Power Electronics in Automotive Applications

2019-05-06
Modern power electronics (PE) devices and circuits are now in widespread use in automotive and non-automotive applications. The purpose of this course is to give an overall introduction to the key aspects of power electronic circuits, components and design in automotive applications. Topics covered include power semiconductor devices, their characteristics and operation, and their use in power electronics circuits.
Standard

Energy Transfer System for Electric Vehicles - Part 2: Communication Requirements and Network Architecture

2014-02-26
CURRENT
J2293/2_201402
SAE J2293 establishes requirements for Electric Vehicles (EV) and the off-board Electric Vehicle Supply Equipment (EVSE) used to transfer electrical energy to an EV from an Electric Utility Power System (Utility) in North America. This document defines, either directly or by reference, all characteristics of the total EV Energy Transfer System (EV-ETS) necessary to insure the functional interoperability of an EV and EVSE of the same physical system architecture. The ETS, regardless of architecture, is responsible for the conversion of AC electrical energy into DC electrical energy that can be used to charge the Storage Battery of an EV, as shown in Figure 1. The different physical ETS system architectures are identified by the form of the energy that is transferred between the EV and the EVSE, as shown in Figure 2. It is possible for an EV and EVSE to support more than one architecture.
Book

Electronic Transmission Controls

2000-06-10
The evolution of the automotive transmission has changed rapidly in the last decade, partly due to the advantages of highly sophisticated electronic controls. This evolution has resulted in modern automatic transmissions that offer more control, stability, and convenience to the driver. Electronic Transmission Controls contains 68 technical papers from SAE and other international organizations written since 1995 on this rapidly growing area of automotive electronics. This book breaks down the topic into two sections. The section on Stepped Transmissions covers recent developments in regular and 4-wheel drive transmissions from major auto manufacturers including DaimlerChrysler, General Motors, Toyota, Honda, and Ford. Technology covered in this section includes: smooth shift control; automatic transmission efficiency; mechatronic systems; fuel saving technologies; shift control using information from vehicle navigation systems; and fuzzy logic control.
Book

Concepts in Turbocharging for Improved Efficiency and Emissions Reduction

2014-09-22
Legislative requirements to reduce CO2 emissions by 2020 have resulted in significant efforts by car manufacturers to explore various methods of pollution abatement. One of the most effective ways found so far is by shortening the cylinder stroke and downsizing the engine. This new engine then needs to be boosted, or turbocharged, to create the full and original load torque. Turbocharging has been and will continue to be a key component to the new technologies that will make a positive difference in the next-generation engines of years to come. Concepts in Turbocharging for Improved Efficiency and Emissions Reduction explores the many ways that turbocharging will deliver concrete results in meeting the new realities of sustainable, green transportation.
Standard

Crane Hoist Line Speed and Power Test Procedure

2017-06-07
CURRENT
J820_201706
This document applies primarily to mobile cranes that lift loads by means of a drum and hoist line mechanism. It can be used to determine the hoist line speed and power of other hoist line mechanisms, if the load can be held constant and hoist line travel distance is sufficient for the accuracy of the line speed measurements prescribed. This recommended practice applies to all mechanical, hydraulic, and electric powered hoist mechanisms.
Standard

Electrical Definitions

1998-03-01
CURRENT
J831_199803
This SAE Standard contains the industry standard definitions for electrical equipment used in the generation of electric power onboard today's conventional road vehicles. It is intended to complement the electronic terminology that was formerly documented in SAE J1213 (canceled) and/or in other industry glossaries of electrical/electronic devices.
Standard

PENETRATING RADIATION INSPECTION

1991-03-01
HISTORICAL
J427_199103
The purpose of this SAE Information Report is to provide basic information on penetrating radiation, as applied in the field of nondestructive testing, and to supply the user with sufficient information so that he may decide whether penetrating radiation methods apply to his particular inspection need. Detailed information references are listed in Section 2.
Standard

Penetrating Radiation Inspection

2018-01-09
CURRENT
J427_201801
The purpose of this SAE Information Report is to provide basic information on penetrating radiation, as applied in the field of nondestructive testing, and to supply the user with sufficient information so that he may decide whether penetrating radiation methods apply to his particular inspection need. Detailed information references are listed in Section 2.
Standard

Road Vehicles—Alternators with Regulators—Test Methods and General Requirements

1999-06-01
CURRENT
J56_199906
This SAE Standard specifies test methods and general requirements for the determination of the electrical characteristic data of alternators for road vehicles. It applies to alternators, cooled according to manufacturer’s instructions, mounted on internal combustion engines. This document attempts to follow ISO 8854, dated 1988. ISO 8854 has been modified herein to reflect local market requirements and historical precedent.
Standard

Electric Emergency Lanterns

1972-10-01
HISTORICAL
J596_197210
Definition-An emergency electric lantern is a self-powered device capable of providing and displaying a warning light, either f1ashed1 or steady burning, for use as provided in the Safety Regulations of the Interstate Commerce Commission and in the Uniform Vehicle Code to indicate to the driver of an approaching vehicle that a stationary vehicular hazard is present and that he should proceed with caution.
Standard

Hydraulic Motor Test Procedures

2009-06-12
CURRENT
J746_200906
This test code describes tests for determining characteristics of hydraulic positive displacement motors as used on construction and industrial machinery as referenced in SAE J1116. These characteristics are to be recorded on data sheets similar to the one shown in Figure 1. Two sets of data sheets are to be submitted: one at 49 °C (120 °F) and one at 82 °C (180 °F).
Standard

Transport Area Network Cabling

2011-06-30
CURRENT
J2496_201106
This series of SAE Recommended Practices was developed to provide an open architecture system for on-board electronic systems. It is the intention of these documents to allow electronic devices to communicate with each other by providing a standard architecture. This particular document describes the Network Interface and Cabling which defines the requirements needed for communicating between devices that are on different segments of the SAE J2496 Transport Area Network. While these recommended practices may be used in retrofitting older vehicles, the primary intent is for implementation in new bus procurements.
Standard

Parking Brake Control Identification - Vehicles with Hydraulic Brake Systems and Automatic Transmissions

2012-04-09
HISTORICAL
J2688_201204
The scope and purpose of the SAE Recommended Practice is to provide standards for the control and indication of parking brakes in hydraulic braked vehicles over 4540 kg (10 000 lb) GVWR. This recommended practice pertains to automatic transmission applications and supplements the SAE J915 recommended practice. This recommended practice does not address parking brake system performance. Parking brake system performance, both static and dynamic conditions, is the responsibility of the OEM vehicle manufacturer or manufacturers that modify the vehicle by adding special vocational required equipment (such as but not limited to outriggers, cranes, etc.).
Standard

Parking Brake Control Identification - Vehicles with Hydraulic Brake Systems and Automatic Transmissions

2016-02-18
CURRENT
J2688_201602
The scope and purpose of the SAE Recommended Practice is to provide standards for the control and indication of parking brakes in hydraulic braked vehicles over 4540 kg (10000 lb) GVWR. This recommended practice pertains to automatic transmission applications and supplements the SAE J915 recommended practice. This recommended practice does not address parking brake system performance. Parking brake system performance, both static and dynamic conditions, is the responsibility of the OEM vehicle manufacturer or manufacturers that modify the vehicle by adding special vocational required equipment (such as but not limited to outriggers, cranes, etc.).
Standard

Vehicle System Voltage—Initial Recommendations

1999-06-04
CURRENT
J2232_199906
This SAE Information Report is a summary of the initial recommendations of the SAE committee on Dual/Higher Voltage Vehicle Electrical Systems regarding the application of higher voltages in vehicle systems. This document does not attempt to address the technical merits of specific voltages or electrical system architectures.
Standard

Multiposition Small Engine Exhaust System Fire Ignition Suppression

2012-10-23
CURRENT
J335_201210
This SAE Recommended Practice establishes equipment and test procedures for determining the performance of spark arrester exhaust systems of multiposition small engines (<19 kW) used in portable applications, including hand-held, hand-guided, and backpack mounted devices. It is not applicable to spark arresters used in vehicles or stationary equipment.
Standard

Self-Propelled Sweepers and Scrubbers Fuel Consumption of Non-Propulsion Auxiliary Engines

2007-11-15
HISTORICAL
J2542_200711
This SAE Standard applies to the fuel consumption of non-propulsion engines used to drive exclusively the sweeping and cleaning functions of multi-engine sweepers and scrubbers as defined in SAE J2130. The purpose of this document is to derive a uniform expression of fuel consumption from a simulated test cycle. The derived expression is based on various work situations encountered during a typical daily eight-hour period of operation. The derived fuel consumption may be used to assess the sizing of fuel tanks.
Standard

Self-Propelled Sweepers and Scrubbers Fuel Consumption of Non-Propulsion Auxiliary Engines

2001-05-14
HISTORICAL
J2542_200105
This SAE Standard applies to the fuel consumption of non-propulsion engines used to drive exclusively the sweeping and cleaning functions of multi-engine sweepers and scrubbers as defined in SAE J2130. The purpose of this document is to derive a uniform expression of fuel consumption from a simulated test cycle. The derived expression is based on various work situations encountered during a typical daily eight-hour period of operation. The derived fuel consumption may be used to assess the sizing of fuel tanks.
Standard

Standards for Battery secondary use

2012-02-15
WIP
J2997
To develop standards for a testing and identity regimen to define batteries for variable safe reuse. Utilize existing or in process standards such as Transportation, Labelling and State of Health.Add to these reference standardsthe required information to provide a safe and reliable usage.
X