Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Transmission Engineering Academy

The Transmission Engineering Academy covers the sciences of automotive passenger car and light truck engineering principles and practices necessary to effectively understand, develop, specify and start the design process. Topics include advances in manual, automatic, automated manual, and continuously variable transmission technology, materials and processes applicable to the major components within these transmissions, calibration of these systems unto themselves and integration into the full vehicle powertrain.
Training / Education

Corrosion Engineering and Prevention

The transportation industry, including motor vehicles, aircraft, rail, marine, commercial, off-road and defense vehicles, as well as infrastructures, energy sectors, raw materials, manufacturing, health and food industries all experience significant issues with corrosion which results in billions of dollars of loss each year. Corrosion education and prevention is essential to improve and increase the service life of parts and components which may have a significant impact on the economy of various industries and nations.
Training / Education

Modern Fluids for Internal Combustion Engines An Overview

Lubricating fluids are the lifeblood of modern engines, performing numerous vital functions from reducing system friction, temperature, and fuel consumption to minimizing tailpipe emissions. This comprehensive seminar covers the latest developments in lubricating fluids technologies and explores the relationships between lubricating fluids and emissions, after-treatment devices, bio-fuels, and fuel economy. Fundamentals of crankcase lubrication, including the properties and performance requirements of global base stocks and lubricants will be covered.
Training / Education

Improving Fuel Efficiency with Engine Oils

2019-05-06
Improving vehicular fuel efficiency is of paramount importance to the global economy. Governmental regulations, climate change and associated health concerns, as well as the drive towards energy independence, have created a technical need to achieve greater fuel efficiency. While vehicle manufacturers are focusing efforts on improved combustion strategies, smaller displacement engines, weight reduction, low friction surfaces, etc., the research involved in developing fuel efficient engine oils has been less publicized.
Training / Education

Materials Degradation in Mechanical Design Wear, Corrosion, Fatigue and their Interactions

2019-04-09
Materials degradation from environmental conditions is a common factor that will often occur in mechanical equipment used in every type of environment. These processes can frequently materialize in unpredicted and harmful ways, especially when they interact and lead to early component damage or failure. This five-session course will summarize the mechanisms that cause materials and mechanical components to degrade in service through exposure to deleterious mechanical and environmental conditions.
Training / Education

Fuel Systems Material Selection and Compatibility with Alternative Fuels

2019-04-02
This course will introduce the participants to the factors governing fuel-material compatibility and methods to predict and empirically determine compatibility for new alternative fuel chemistries.  By understanding the mechanisms and factors associated with chemically-induced degradation, participants will be able to assess the impact of fuel chemistry to infrastructure components, including those associated with vehicle fuel systems.  This course is unique in that it looks at compatibility from a fuel chemistry perspective, especially new fuel types such as alcohols and other biofuels. 
Standard

Lubricants, Industrial Oils, and Related Products Type G Slideway Lubricants--Specification

2001-05-30
HISTORICAL
MS1007_200105
The Society of Automotive Engineers (SAE) Industrial Lubricants Committee has developed a number of industrial, non-production lubricant performance specifications. The purpose of these voluntary SAE specifications is to: a. Define minimum performance requirements for industrial lubricants. b. Provide lubricant suppliers with performance targets for a minimum number of key industrial lubricants. Improve the availability of these lubricants to member companies. Provide a plant oriented, user friendly, classification system using common test standards and properties.
Standard

Steel Self-Drilling Tapping Screws

2013-04-16
CURRENT
J78_201304
This SAE Standard covers the dimensional and general specifications, including performance requirements, for carbon steel self-drilling tapping screws suitable for use in general applications. It is the objective of this document to insure that carbon steel self-drilling tapping screws, by meeting the mechanical and performance requirements specified, shall drill a hole and form or cut mating threads in materials into which they are driven without deforming their own thread and without breaking during assembly. Appendix A is included to provide a recommended technique for measuring the case depth on the screws.
Standard

ELECTROMAGNETIC TESTING BY EDDY CURRENT METHODS

1991-03-01
HISTORICAL
J425_199103
The purpose of this SAE Information Report is to provide general information relative to the nature and use of eddy current techniques for nondestructive testing. The document is not intended to provide detailed technical information but to serve as an introduction to the principles and capabilities of eddy current testing, and as a guide to more extensive references listed in Section 2.
Standard

Measurement of Passenger Compartment Refrigerant Concentrations Under System Refrigerant Leakage Conditions

2011-02-04
CURRENT
J2772_201102
This Standard is restricted to refrigeration circuits that provide air-conditioning for the passenger compartments of passenger and commercial vehicles. This Standard includes analytical and physical test procedures to evaluate concentration inside the passenger compartment. In the early phases of vehicle evaluation, usage of the analytical approach may be sufficient without performing physical tests. The physical test procedure involves releasing refrigerant from an external source to a location adjacent to the evaporator core (inside the HVAC-Module). An apparatus is used to provide a repeatable, calibrated leak rate. If the system has multiple evaporators, leakage could be simulated at any of the evaporator locations. This standard gives detail information on the techniques for measuring R-744 [CO2] and R-1234yf [HFO-1234yf], but the general techniques described here can be used for other refrigerants as well.
Standard

Lubricating Oils, Aircraft Piston Engine (Non-Dispersant Mineral Oil)

1991-06-01
HISTORICAL
J1966_199106
This SAE Standard establishes the requirements for lubricating oils containing ashless dispersant additives to be used in four-stroke cycle, reciprocating piston aircraft engines. This document covers the same lubricating oil requirements as the former military specification MIL-L-22851. Users should consult their airframe or engine manufacturers manuals for the latest listing of acceptable lubricants.
Standard

Lubricating Oils, Aircraft Piston Engine (Non-Dispersant Mineral Oil)

1989-12-01
HISTORICAL
J1966_198912
This SAE Standard establishes the requirements for lubricating oils containing ashless dispersant additives to be used in four-stroke cycle, reciprocating piston aircraft engines. This document covers the same lubricating oil requirements as the former military specification MIL-L-22851. Users should consult their airframe or engine manufacturers manuals for the latest listing of acceptable lubricants.
Standard

Lubricating Oils, Aircraft Piston Engine (Non-Dispersant Mineral Oil)

2011-08-22
CURRENT
J1966_201108
This SAE Standard establishes the requirements for nondispersant, mineral lubricating oils to be used in four-stroke cycle piston aircraft engines. This document covers the same lubricating oil requirements as the former military specification MIL-L-6082. Users should consult their airframe or engine manufacturers manuals for the latest listing of acceptable lubricants.
Standard

Lubricating Oils, Aircraft Piston Engine(Non-Dispersant Mineral Oil)

2000-06-08
HISTORICAL
J1966_200006
This SAE Standard establishes the requirements for nondispersant, mineral lubricating oils to be used in four-stroke cycle piston aircraft engines. This document covers the same lubricating oil requirements as the former military specification MIL-L-6082. Users should consult their airframe or engine manufacturers manuals for the latest listing of acceptable lubricants.
Standard

Lubricating Oils, Aircraft Piston Engine (Non-Dispersant Mineral Oil)

2005-07-31
HISTORICAL
J1966_200507
This SAE Standard establishes the requirements for nondispersant, mineral lubricating oils to be used in four-stroke cycle piston aircraft engines. This document covers the same lubricating oil requirements as the former military specification MIL-L-6082. Users should consult their airframe or engine manufacturers manuals for the latest listing of acceptable lubricants.
X