Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Charging Forward on Petroleum Alternatives

2011-12-14
The pace of replacement of petroleum-based fuels as the primary fuel supply for transportation may still be a point of debate. However, the need to find a viable replacement fuel or group of fuels is no longer a major point of debate. The panel will outline what has changed on the journey during the past few years and what the future holds. Viewpoints from government, the military, fuel suppliers and academia will be presented.
Video

Real time Renewable Energy Availability for EV Charging

2012-03-29
Main topics are the development and the build-up of an 18ton hybrid truck with a parallel hybrid drivetrain. With this truck it is possible to drive up to 3 kilometers in the pure electric driving mode. Presenter Andreas Eglseer, Engineering Center Steyr GmbH & Co. KG
Video

Hybrid Cost Assessment Plus AMT/Hybrid Concept

2012-03-27
Presentation will concentrate on a brief overview of SAE International including history, international focus and SAE electro-mobility ground vehicle standards development activities. The new era of mobility and the driving forces behind it including converging technologies and today�s drive toward �green� will be discussed. Also, standards and technology enablers for vehicle electrification including, the global landscape for EV charging standards and next generation charging method approaches will be reviewed. Additionally, an overview of SAE global EV Battery Standards and activities including industry/government collaborative efforts to develop lithium ion rechargeable energy storage system safety standards will be provided. Presenter Keith Wilson, SAE International
Video

Smart and Connected Electrification at Ford

2012-03-27
The automotive industry continues to develop new powertrain technologies aimed at reducing overall vehicle level fuel consumption. This paper discusses the development of a new highly efficient parallel hybrid transmission for use in transversely installed powertrains for FWD applications. FEV is developing a new 7-speed hybrid transmission for transverse installation. The transmission with a design torque of 320 Nm is based on AMT (automated manual transmission) technology and uses a single electric motor. The innovative gearset layout combines the advantages of modern AMTs such as best efficiency, low costs and few components (reduced part count) with full hybrid capabilities and electric torque support during all gear shifts. Furthermore, the gear set layout allows for very short shift-times due to the favorable distribution of inertias. Other features include an A/C compressor being electrically driven by the electric motor of the transmission during engine start/stop phases.
Video

Beyond MPG: Characterizing and Conveying the Efficiency of Advanced Plug-In Vehicles 

2011-11-08
Research in plug in vehicles (PHEV and BEV) has of course been ongoing for decades, however now that these vehicles are finally being produced for a mass market an intense focus over the last few years has been given to proper evaluation techniques and standard information to effectively convey efficiency information to potential consumers. The first challenge is the development of suitable test procedures. Thanks to many contributions from SAE members, these test procedures have been developed for PHEVs (SAE J1711 now available) and are under development for BEVs (SAE J1634 available later this year). A bigger challenge, however, is taking the outputs of these test results and dealing with the issue of off-board electrical energy consumption in the context of decades-long consumer understanding of MPG as the chief figure of merit for vehicle efficiency.
Video

Ionic Liquids as Novel Lubricants or Lubricant Additives

2012-05-10
For internal combustion engines and industrial machinery, it is well recognized that the most cost-effective way of reducing energy consumption and extending service life is through lubricant development. This presentation summarizes our recent R&D achievements on developing a new class of candidate lubricants or oil additives ionic liquids (ILs). Features of ILs making them attractive for lubrication include high thermal stability, low vapor pressure, non-flammability, and intrinsic high polarity. When used as neat lubricants, selected ILs demonstrated lower friction under elastohydrodynamic lubrication and less wear at boundary lubrication benchmarked against fully-formulated engine oils in our bench tests. More encouragingly, a group of non-corrosive, oil-miscible ILs has recently been developed and demonstrated multiple additive functionalities including anti-wear and friction modifier when blended into hydrocarbon base oils.
Video

Certifiable MultiCore Systems used in Safety Critical System

2012-03-21
All Semi Vendors do have multi core CPUs in their portfolio and adding new devices every day. This is the only possibility to grow performance and fulfill Moore's law. Multi core offers a wide variety of possibilities to reduce hardware complexity, reduce power consumption, shrink board space, expand functionality and performance. On the other hand the software complexity goes up and this directly affects the ability to achieve a certified system. The main trend as of today and in the future is the rising number of cores in a single chip and the increasing functionality of the software. As this trend does not stop at safety critical systems, the System/Solution Architects have to question themselves how to guarantee data integrity, robustness, robust portioning, avoid multi point of failures and race conditions. This presentation will highlight ideas, do's and don'ts for those who will design a safety critical multi Core system today or in the near future.
Video

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-05-30
This paper presents a low-cost path for extending the range of small urban pure electric vehicles by hydraulic hybridization. Energy management strategies are investigated to improve the electric range, component efficiencies, as well as battery usable capacity. As a starting point, a rule-based control strategy is derived by analysis of synergistic effects of lead-acid batteries, high efficient operating region of DC motor and the hydraulic pump/motor. Then, Dynamic Programming (DP) is used as a benchmark to find the optimal control trajectories for DC motor and Hydraulic Pump/Motor. Implementable rules are derived by studying the optimal control trajectories from DP. With new improved rules implemented, simulation results show electric range improvement due to increased battery usable capacity and higher average DC motor operating efficiency. Presenter Xianke Lin
Video

Impact of Supervisory Control on Criteria Tailpipe Emissions for an Extended-Range Electric Vehicle

2012-06-05
The Hybrid Electric Vehicle Team of Virginia Tech participated in the three-year EcoCAR Advanced Vehicle Technology Competition organized by Argonne National Laboratory, and sponsored by General Motors and the U.S. Department of Energy. The team established goals for the design of a plug-in, range-extended hybrid electric vehicle that meets or exceeds the competition requirements for EcoCAR. The challenge involved designing a crossover SUV powertrain to reduce fuel consumption, petroleum energy use, regulated tailpipe emissions, and well-to-wheel greenhouse gas emissions. To interface with and control the hybrid powertrain, the team added a Hybrid Vehicle Supervisory Controller, which enacts a torque split control strategy. This paper builds on an earlier paper [1] that evaluated the petroleum energy use, criteria tailpipe emissions, and greenhouse gas emissions of the Virginia Tech EcoCAR vehicle and control strategy from the 2nd year of the competition.
Video

The Scuderi Split-Cycle and the Miller Cycle: A Perfect Match

2012-05-10
Gasoline engines continue to suffer from significant pumping losses despite decades of effort focused on reducing throttling. Honeywell Turbo has developed a throttle with an integrated turbine/generator that generates electricity by recovering pumping work. This energy offsets power normally provided by the crank driven alternator, thereby saving fuel. It integrates well with modern electrical systems which employ smart charging and idle stop strategies. The ThrottleCharger provides fuel economy benefits up to 5% over federal test cycles and in real world conditions. Presenter Mike Guidry, Honeywell Int'l (Turbo Technologies)
Collection

Energy Efficiency of Thermal Systems, 2014

2014-04-01
Proper thermal management can significantly contribute to overall system energy efficiency. This technical paper collection highlights the latest developments in thermal management energy efficiency.
Journal Article

Evaluation of the Energy Consumption of a Thermal Management System of a Plug-In Hybrid Electric Vehicle Using the Example of the Audi Q7 e-tron

2018-06-18
Abstract The transition of vehicle propulsion technologies away from conventional internal combustion engines toward more electrically dominant systems such as plug-in hybrid electric vehicles (PHEV) poses new challenges for vehicle thermal management systems. Especially at low ambient temperatures, consumer demand for cabin comfort as well as legislatively imposed safety considerations significantly reduce the electric driving range because only electric energy can be used for heating during emissions-free driving modes. Recent developments to find energy efficient thermal management systems for electric and plug-in electric vehicles have led to the implementation of automotive heat pump systems. As an alternative approach to meet dynamic heating demands and safety regulations, these systems use heat at a low temperature level, for example the waste heat of electric drivetrain components, to heat the passenger compartment efficiently and therefore increase the electric driving range.
Journal Article

Introducing the Modified Tire Power Loss and Resistant Force Regarding Longitudinal Slip

2018-04-18
Abstract Investigation of vehicle resistant forces and power losses is of crucial importance owing to current state of energy consumption in transport sector. Meanwhile, considerable portion of resistant forces in a ground vehicle is traced back to tires. Pneumatic tires are known to be a source of energy dissipation as a consequence of their viscoelastic nature. The current study aims to provide a modification to tire resistance by considering the power loss in a tire due to longitudinal slip. The modified tire resistance is comprised of rolling resistance and a newly introduced resistance caused by tire slip, called slip resistance. The physical model is chosen for parameters sensitivity study since the tractive force is described in this model via tangible physical parameters, e.g. tire tangential stiffness, coefficient of friction, and contact patch length.
Journal Article

Application of a New Method for Comparing the Overall Energy Consumption of Different Automotive Thermal Management Systems

2018-10-03
Abstract This article applies a new method for the evaluation and estimation of real-life energy consumption of two different thermal management systems based on driving behavior in the course of the day. Recent attempts to find energy-efficient thermal management systems for electric and plug-in hybrid electric vehicles have led to using secondary loop systems as an alternative approach for meeting dynamic heating and cooling demands and reducing refrigerant charge. However, the additional layer of thermal resistance, which influences the system’s transient behavior as well as passenger compartment comfort during cool-down or heat-up, makes it difficult to estimate the annual energy consumption. In this article, the overall energy consumption of a conventional and a secondary loop system is compared using a new method for describing actual customers’ driving behavior in the course of the day.
Journal Article

On WTW and TTW Specific Energy Consumption and CO2 Emissions of Conventional, Series Hybrid and Fully Electric Buses

2018-04-17
Abstract Making use of a specifically designed dynamical vehicle model, the authors here presented the results of an activity for the evaluation of energy consumption and CO2 emissions of buses for urban applications. Both conventional and innovative (series hybrid, and fully electric) vehicles were considered to obtain interesting comparative conclusions. The derived tool was used to simulate the dynamical behaviour of these vehicles on a number of kinematic profiles measured during real buses operation in different contexts, varying from really congested city centre routes to fast-lane operated services. It was so possible to evaluate the energetic performances of those buses on a Tank-to-Wheel (TTW) basis.
Journal Article

Design, Analysis, and Optimization of a Multi-Speed Powertrain for Class-7 Electric Trucks

2018-04-17
Abstract The development, analysis, and optimization of battery electric class-7 heavy-duty trucks equipped with multi-speed transmissions are discussed in this paper. The designs of five new traction motors-fractional-slot, concentrated winding machines-are proposed for use in heavy-duty electric trucks. The procedure for gear-ratio range selection is outlined and ranges of gear ratios for three-to six-speed transmission powertrains are calculated for each of the proposed electric traction motors. The simulation and gear-ratio optimization tasks for class-7 battery electric trucks are formulated. The energy consumption of the e-truck with the twenty possible powertrain combinations is minimized over the four driving cycles and the most efficient powertrain layouts that meet the performance criteria are recommended.
Journal Article

Real-Time Optimal Control of Power Management in a Fuel Cell Hybrid Electric Vehicle: A Comparative Analysis

2018-03-08
Abstract Power split in Fuel Cell Hybrid Electric Vehicles (FCHEVs) has been controlled using different strategies ranging from rule-based to optimal control. Dynamic Programming (DP) and Model Predictive Control (MPC) are two common optimal control strategies used in optimization of the power split in FCHEVs with a trade-off between global optimality of the solution and online implementation of the controller. This is due to the fact that DP that offers the global optimal solution requires the pre-known knowledge of the driving condition for the whole drive cycle, which makes the real-time implementation of the strategy more challenging. In this paper, both control strategies are developed and tested on a FC/battery vehicle model, and the results are compared in terms of total energy consumption. In addition, the effects of the MPC prediction horizon length on the controller performance are studied.
Journal Article

Parametric Studies on Airfoil-Boundary Layer Ingestion Propulsion System

2020-03-11
Abstract From the fact that a propulsor consumes less power for a given thrust if the inlet air is slower, simulations are conducted for a propulsor imposed behind an airfoil as ideal boundary layer ingestion (BLI) propulsor to stand on the benefits of this configuration from the point of view of power and efficiency and to get a closer look on the mutual interaction between them. This interaction is quantified by the impact on three main sets of parameters, namely, power consumption, boundary layer properties, and airfoil performance. The position and size of the propulsor have great influence on the flow around the airfoil. Parametric studies are carried out to understand their influence. BLI propulsor directly affects the power saving and all of the pressure-dependent parameters, including lift and drag. For the present case, power saving reached 14.4% compared to the propeller working in freestream.
Journal Article

Implementation and Optimization of a Variable-Speed Coolant Pump in a Powertrain Cooling System

2020-02-07
Abstract This study investigates methods to precisely control a coolant pump in an internal combustion engine. The goal of this research is to minimize power consumption while still meeting optimal performance, reliability and durability requirements for an engine at all engine-operating conditions. This investigation achieves reduced fuel consumption, reduced emissions, and improved powertrain performance. Secondary impacts include cleaner air for the earth, reduced operating costs for the owner, and compliance with US regulatory requirements. The study utilizes mathematical modeling of the cooling system using heat transfer, pump laws, and boiling analysis to set limits to the cooling system and predict performance changes.
X