Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

The Effect of Fuel Aromatic Structure and Content on Direct Injection Diesel Engine Particulates

1992-02-01
920110
A single cylinder, Cummins NH, direct-injection, diesel engine has been operated in order to evaluate the effects of aromatic content and aromatic structure on diesel engine particulates. Results from three fuels are shown. The first fuel, a low sulfur Chevron diesel fuel was used as a base fuel for comparison. The other fuels consisted of the base fuel and 10% by volume of 1-2-3-4 tetrahydronaphthalene (tetralin) a single-ring aromatic and naphthalene, a double-ring aromatic. The fuels were chosen to vary aromatic content and structure while minimizing differences in boiling points and cetane number. Measurements included exhaust particulates using a mini-dilution tunnel, exhaust emissions including THC, CO2, NO/NOx, O2, injection timing, two-color radiation, soluble organic fraction, and cylinder pressure. Particulate measurements were found to be sensitive to temperature and flow conditions in the mini-dilution tunnel and exhaust system.
Technical Paper

A Study of Fuel Nitrogen Conversion, Performance, and Emission Characteristcs of Blended SCR-II in a High-Speed Diesel Engine

1981-02-01
810251
Engine operation with blended SRC-II and pyridine doped diesel fuel were compared relative to regular #2 diesel fuel in a 4-stroke, turbocharged, direct injection, high speed commercial diesel engine. The brake specific fuel consumption, (M-Joule/hp-hr), turbocharging, combustion characteristics and smoke did not change between blended SRC-II and regular #2 diesel fuel. This was expected since the sample fuels were blended to be of the same cetane number. The maximum torque, hydrocarbon and NOx emissions were higher for blended SRC-II. There was essentially no difference in the NOx measurements of the pyridine doped fuel and regular #2 diesel fuel. The NOx emission increase for the blended SRC-II is believed to be caused by the increased aromatic content of the blended SRC-II and not the fuel nitrogen conversion.
Technical Paper

Investigation of the Effects of Cetane Number, Volatility, and Total Aromatic Content on Highly-Dilute Low Temperature Diesel Combustion

2010-04-12
2010-01-0337
The objective of this study is to increase fundamental understanding of the effects of fuel composition and properties on low temperature combustion (LTC) and to identify major properties that could enable engine performance and emission improvements, especially under high load conditions. A series of experiments and computational simulations were conducted under LTC conditions using 67% EGR with 9.5% inlet O₂ concentration on a single-cylinder version of the General Motors Corporation 1.9L direct injection diesel engine. This research investigated the effects of Cetane number (CN), volatility and total aromatic content of diesel fuels on LTC operation. The values of CN, volatility, and total aromatic content studied were selected in a DOE (Design of Experiments) fashion with each variable having a base value as well as a lower and higher level. Timing sweeps were performed for all fuels at a lower load condition of 5.5 bar net IMEP at 2000 rpm using a single-pulse injection strategy.
Technical Paper

Experimental Investigation of Light-Medium Load Operating Sensitivity in a Gasoline Compression Ignition (GCI) Light-Duty Diesel Engine

2013-04-08
2013-01-0896
The light-medium load operating range (4-7 bar net IMEP) presents many challenges for advanced low temperature combustion strategies utilizing low cetane fuels (specifically, 87-octane gasoline) in light-duty, high-speed engines. The overly lean overall air-fuel ratio (Φ≺0.4) sometimes requires unrealistically high inlet temperatures and/or high inlet boost conditions to initiate autoignition at engine speeds in excess of 1500 RPM. The objective of this work is to identify and quantify the effects of variation in input parameters on overall engine operation. Input parameters including inlet temperature, inlet pressure, injection timing/duration, injection pressure, and engine speed were varied in a ~0.5L single-cylinder engine based on a production General Motors 1.9L 4-cylinder high-speed diesel engine.
Technical Paper

The Effects of Oxygenate and Gasoline-Diesel Fuel Blends on Diesel Engine Emissions

2000-03-06
2000-01-1173
A study was performed in which the effects on the regulated emissions from a commercial small DI diesel engine were measured for different refinery-derived fuel blends. Seven different fuel blends were tested, of which two were deemed to merit more detailed evaluation. To investigate the effects of fuel properties on the combustion processes with these fuel blends, two-color pyrometry was used via optically accessible cylinderheads. Additional data were obtained with one of the fuel blends with a heavy-duty DI diesel engine. California diesel fuel was used as a baseline. The fuel blends were made by mixing the components typically found in gasoline, such as methyl tertiary-butyl ether (MTBE) and whole fluid catalytic cracking gasoline (WH-FCC). The mixing was performed on a volume basis. Cetane improver (CI) was added to maintain the same cetane number (CN) of the fuel blends as that of the baseline fuel.
Journal Article

Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime

2011-04-12
2011-01-1182
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline (termed GDICI for Gasoline Direct-Injection Compression Ignition) in the low temperature combustion (LTC) regime is presented. As an aid to plan engine experiments at full load (16 bar IMEP, 2500 rev/min), exploration of operating conditions was first performed numerically employing a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion. Operation ranges of a light-duty diesel engine operating with GDICI combustion with constraints of combustion efficiency, noise level (pressure rise rate) and emissions were identified as functions of injection timings, exhaust gas recirculation rate and the fuel split ratio of double-pulse injections.
X