Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Pyrosynthesis of PAH in a Modern IDI Diesel Engine

1996-05-01
961230
N-hexadecane, kerosene and diesel fuels were used for powering a new IDI diesel engine in order to elucidate the role of in-cylinder pyrosynthesis of PAH in diesel emissions. The present work is a complementary to previous investigations (1,2,3) where exhaust deposits have contributed to and interfered with the results. This was eliminated by using a brand new deposit-free engine. Nonetheless, high levels of PAH were detected in the exhaust even with the PAH free fuels. This was attributable to the high rates of lube oil consumption during the running-in period of this engine. The fuel PAH were also shown to play a significant role in the total emissions of these species in diesel combustion.
Technical Paper

Characterization of Diesel Particulate Emissions of Two IDI Diesel Engines Using Diesel and Kerosene Fuels

1996-05-01
961231
An old single cylinder Petter AA1 and a new four cylinder Ford 1.61 engines were operated over a wide range of steady state conditions using kerosene and diesel fuels. The two engines exhibited different trends in forming the particulate emissions. For both fuels the particulate emissions were dominated by the carbon for the old engine, and by the SOF for the new engine where the latter was characterized by its low level of emissions. The engine operating conditions also influenced the emissions of the different particulate fractions. Generally, the old engine had higher unburnt lube oil emissions as well as high survival of diesel n-alkanes and PAH in the emissions. However, in the case of kerosene and the new engine when operated both with kerosene and diesel fuel, the pyrosynthesis of these compounds was evident. Sulphates in the particulates, which originated mainly in the fuel, were shown to incorporate low levels of background from the engine deposits and the lubricating oil.
X